数据仓库内容分享(七):Flink CDC 实现海量数据实时同步转换

目录

CDC 概念回顾

对比常见的开源 CDC 方案

传统 CDC ETL

Flink CDC

Flink CDC ETL


CDC 概念回顾

CDC 的全称是 Change Data Capture ,在广义的概念上,只要是能捕获数据变更的技术,我们都可以称之为 CDC 。目前通常描述的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。CDC 技术的应用场景非常广泛:

数据同步:用于备份,容灾; 数据分发:一个数据源分发给多个下游系统; 数据采集:面向数据仓库 / 数据湖的 ETL 数据集成,是非常重要的数据源。 CDC 的技术方案非常多,目前业界主流的实现机制可以分为两种:

基于查询的 CDC:离线调度查询作业,批处理。把一张表同步到其他系统,每次通过查询去获取表中最新的数据;无法保障数据一致性,查的过程中有可能数据已经发生了多次变更;不保障实时性,基于离线调度存在天然的延迟。

基于日志的 CDC:实时消费日志,流处理,例如 MySQL 的 binlog 日志完整记录了数据库中的变更,可以把 binlog 文件当作流的数据源;保障数据一致性,因为 binlog 文件包含了所有历史变更明细;保障实时性,因为类似 binlog 的日志文件是可以流式消费的,提供的是实时数据。

对比常见的开源 CDC 方案

图片

对比增量同步能力,基于日志的方式,可以很好的做到增量同步;而基于查询的方式是很难做到增量同步的。

对比全量同步能力,基于查询或者日志的 CDC 方案基本都支持,除了 Canal。

而对比全量 + 增量同步的能力,只有 Flink CDC、Debezium、Oracle Goldengate 支持较好。

从架构角度去看,该表将架构分为单机和分布式,这里的分布式架构不单纯体现在数据读取能力的水平扩展上,更重要的是在大数据场景下分布式系统接入能力。例如 Flink CDC 的数据入湖或者入仓的时候,下游通常是分布式的系统,如 Hive、HDFS、Iceberg、Hudi 等,那么从对接入分布式系统能力上看,Flink CDC 的架构能够很好地接入此类系统。 在数据转换 / 数据清洗能力上,当数据进入到 CDC 工具的时候是否能较方便的对数据做一些过滤或者清洗,甚至聚合?在 Flink CDC 上操作相当简单,可以通过 Flink SQL 去操作这些数据;但是像 DataX、Debezium 等则需要通过脚本或者模板去做,所以用户的使用门槛会比较高。 另外,在生态方面,这里指的是下游的一些数据库或者数据源的支持。Flink CDC 下游有丰富的 Connector,例如写入到 TiDB、MySQL、Pg、HBase、Kafka、ClickHouse 等常见的一些系统,也支持各种自定义 connector。

可以看到 Flink CDC 的机制以及在增量同步、断点续传、全量同步的表现都很好,也支持全增量一体化同步,而很多其他开源方案无法支持全增量一体化同步。Flink CDC 是分布式架构,可以满足海量数据同步的业务场景。依靠 Flink 的生态优势,它提供了 DataStream API 以及 SQL API,这些 API 提供了非常强大的 transformation 能力。

传统 CDC ETL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值