scatter_()函数——可对标签进行 one-hot 编码

本文介绍了PyTorch中的scatter_函数,该函数用于根据指定的索引在给定维度上填充数据。通过一个示例代码,展示了如何使用scatter_将一维标签转换为one-hot编码,输出是一个二维张量,每个样本对应一行,每列对应一个类别的激活状态。此操作在处理分类问题时非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

scatter_(input, index, dim):将src中数据根据index中的索引按照dim的方向填进input。

        input: 填入的值
        index:填在那个元素位置的索引(二维)
        dim:沿着哪个维度进行索引填充

代码:

import torch

class_num = 10
batch_size = 5
label = torch.LongTensor([0,1,4,2,3])
print(label)

one_hot = torch.zeros(batch_size, class_num).scatter_(1, label.reshape(-1,1), 1)
print(one_hot)

输出:

# tensor([0, 1, 4, 2, 3])
# tensor([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
#         [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
#         [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
#         [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
#         [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]])
# 
# Process finished with exit code 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值