基于python的多元线性回归代码实现

多元线性回归是一种建立多个自变量和一个因变量之间关系的模型。其原理基于多元线性回归方程,该方程可以描述因变量与多个自变量之间的线性关系。多元线性回归方程通常采用以下形式:

Y = β0 + β1X1 + β2X2 + ... + βpXp + ε

其中,Y 是因变量,X1、X2、...、Xp 是自变量,β0、β1、β2、...、βp 是回归系数,ε 是误差项。回归系数是多元线性回归模型的核心参数,它们表示自变量对因变量的影响程度。


import statsmodels.api as sm
import numpy as np

# 创建一个包含自变量和因变量数据的矩阵 X
X = np.array([[1, 2, 1], [2, 4, 3], [3, 5, 4], [4, 7, 5], [5, 8, 6]])

# 创建一个包含因变量数据的向量 Y
Y = np.array([10, 20, 30, 40, 50])

# 添加常数项
X = sm.add_constant(X)

# 使用 OLS 方法进行多元线性回归
model = sm.OLS(Y, X).fit()

# 输出回归系数和截距
print(model.params)
[-2.13162821e-14  1.00000000e+01  0.00000000e+00  7.10542736e-15]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值