Python数据分析9-综合案例-网站日志分析

本文介绍了如何使用Python解析和分析网站日志,涉及日志数据清洗、流量分析、状态码统计及IP地址解析。通过pandas和apache-log-parser库,对日志进行预处理,发现流量峰值由大文件下载引起,早间访问次数最多,状态码200最为常见,而IP地址分布揭示了主要访问来源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       

目录

9.1数据来源

9.1.1网站日志解析

9.1.2日志数据清洗

9.2日志数据分析

9.2.1网站流量分析

9.2.2状态码分析

9.2.3IP地址分析



        网站的日志数据记录了所有Web对服务器的访问活动。本章主要讲解如何通过Python第三方库解析网站日志;如何利用pandas对网站日志数据进行预处理,并结合前面章节中的数据分析和数据可视化计数,对网站日志数据进行分析。

9.1数据来源

9.1.1网站日志解析

注:该数据集可以从从网上资源下载

        网站日志数据是有对应格式的,这里需要通过apache-log-parser库对该数据进行解析,使其变为规范的数据结构。如下图 ,首先通过pip安装这个解析库

        apache-log-parser解析库的使用方法很简单,首先需要了解该日志的格式,以此定义网站日志的数据格式,然后通过make_parser传入即可创建解析器,如图

注:各字段的含义可参考网站https://stackoverflow.com/questions/9234699/understanding-apache-acess-log上的说明

        在log文件中提取一条日志,利用解析器去分析,如下图,可以看出,解析后的数据为字典格式

sample_string = 'koldunov.net 85.26.235.202 - - [16/Mar/2013:00:19:43 +0400] "GET /?p=364 HTTP/1.0" 200 65237 "http://koldunov.net/?p=364" "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11" 0'
data = p(sample_string)
data

        通过以下代码读取log文件,逐行进行读取并解析为字典,然后将字典传入列表中,以此构造DataFrame,如下图。这里提取感兴趣的几个字段,status为状态码,response_bytes_clf为返回的字节数(流量),remote_host为远端主机IP地址,requests_first_line为请求内容,time_received为时间数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值