
目标检测
文章平均质量分 77
目标检测
Lunar*
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
动态背景下的运动目标检测:一种基于特征匹配与差分法的鲁棒技术路线
本文提出了一种动态背景下鲁棒的运动目标检测技术路线。针对动态摄像头场景,系统采用"运动解耦"思想,通过五个关键模块实现精确检测:(1)基于ORB特征和RANSAC的全局运动估计;(2)单应性变换的运动补偿;(3)改进的三帧差分运动显著性检测;(4)结合形态学滤波和几何约束的后处理;(5)基于IoU匹配的多目标跟踪。该方案有效区分摄像机运动与目标独立运动,在复杂场景下展现出良好的检测性能,为后续高级视觉任务提供可靠基础。原创 2025-07-29 17:19:56 · 978 阅读 · 0 评论 -
Python高效绘制中文文本到视频流帧的优化方法
通过将中文标签预渲染为纹理并缓存起来,我们成功实现了一种高效的中文绘制方法,特别适合实时视频流分析场景。这种方法不仅提升了性能,还简化了代码逻辑,非常值得在实际项目中推广使用。原创 2025-01-20 08:42:35 · 927 阅读 · 0 评论 -
使用级联检测策略准确识别猫和猫眼
在动物识别的图像处理中,尤其是在图片中同时出现多种动物的情况下,准确地识别特定动物的特定部位(如猫的眼睛)并不是一件容易的事。常规的对象识别模型在面对复杂的场景时很容易产生误报,例如可能将狗的眼睛错误识别为猫的眼睛。为了提高准确性并减少这类误报,我们可以采用一种称为“级联检测”的方法。原创 2024-07-11 15:43:52 · 366 阅读 · 0 评论 -
深入理解非极大值抑制(NMS)算法
非极大值抑制是提高目标检测性能的重要步骤。通过本文的介绍和代码示例,希望读者能够更好地理解NMS算法的工作原理及其在实际应用中的重要性。原创 2024-06-19 17:11:12 · 862 阅读 · 0 评论 -
基于分组 NMS 的检测模型后处理改进
通过引入分组NMS,我们解决了传统NMS在处理相近类别目标时的不足,尤其是在类别混淆较高的场景中(如“自行车”和“电动车”)。该方法在保持代码高效性的同时,显著提升了检测质量,适用于多种目标检测任务。原创 2024-12-17 09:23:36 · 1353 阅读 · 0 评论 -
华为 Ascend 平台 YOLOv5 目标检测推理教程
本文介绍了如何基于华为 Ascend ACL 推理框架实现 YOLOv5 模型的目标检测推理流程。通过详细解析前处理、推理核心(process 函数)和后处理,展示了 Ascend 平台的推理能力和灵活性。希望本文能为您在 Ascend 平台上的目标检测开发提供参考!如果有任何问题,欢迎留言讨论。原创 2025-01-17 09:35:21 · 2043 阅读 · 0 评论 -
YOLOv8分割模型结果黑边问题分析与解决方案
在分割任务中,黑边问题是由预处理(如 letterbox 填充)导致的。通过分析预处理逻辑,我们可以精准定位黑边范围,并通过裁剪和调整掩膜大小来恢复分割结果的正确性。原创 2024-12-24 17:39:20 · 848 阅读 · 2 评论 -
旋转目标检测数据格式转换:RoLabelImg 与 DOTA 格式
RoLabelImg 是一种基于 XML 的标注格式,其结构类似于标准的 Pascal VOC 数据格式,但针对旋转框增加了 robndbox 标签,存储了目标的中心点坐标 (cx, cy)、宽 (w)、高 (h)、以及旋转角度 (angle)。-- 弧度制 --> </ robndbox > </ object > </ annotation >-- 弧度制 --> </ robndbox > </ object > </ annotation ></原创 2024-12-17 10:51:16 · 848 阅读 · 2 评论 -
按类别调整目标检测标注框的写入顺序以优化人工审核效率
本文通过优化目标检测标注框的写入顺序,解决了人工审核中因标注框层级问题造成的低效问题。脚本简单易用,具有良好的扩展性,可以根据不同需求调整优先类别或处理逻辑。原创 2024-12-17 09:54:25 · 482 阅读 · 0 评论 -
使用 Letter-Box 操作优化数据预处理,加速模型训练
在计算机视觉和深度学习领域,数据预处理是模型训练过程中的关键步骤之一。正确的图像预处理不仅可以提高模型的训练效率,还可以显著提高最终模型的性能。本文将介绍一种常用的图像预处理技术——letter_box操作,解释其原理,展示其优势,并通过Python代码实现该操作。原创 2024-06-19 10:47:44 · 1223 阅读 · 0 评论 -
视频抽帧工具:按需提取高质量数据集
支持自定义时间段的抽帧频率: 可以针对视频的不同时间段,设置不同的抽帧间隔。默认抽帧频率设置: 未指定时间段的帧,按照默认频率抽取。抽帧进度实时可见: 使用 tqdm 实现进度条显示,便于监控处理进度。抽取结果自动保存: 抽取的帧会以 .jpg 格式保存到指定文件夹中,文件名包含视频名称及帧编号。原创 2025-01-08 11:43:11 · 1993 阅读 · 0 评论 -
图像裁剪与批量推理:解决分割和变化检测中的大图处理问题
灵活性:适配任意大小的输入图像。高效性:利用批处理能力,提高推理速度。精度保持:避免直接缩小图像引起的细节丢失。这套方案特别适合在分割、变化检测等任务中处理高分辨率图像。如果你也在做类似任务,不妨试试这种方法!希望这篇博客对你有所帮助!😊。原创 2024-12-25 17:44:34 · 679 阅读 · 0 评论