vsCode+jupyter+Pytorch环境搭建及问题处理

本文介绍如何在Jupyter环境下安装Pytorch,并通过VSCode进行调用。覆盖了Anaconda安装、虚拟环境搭建、Pytorch安装及测试、VSCode安装与配置等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 内容简介

jupyter安装pytorch,使用VScode调用

二. 软件环境

2.1vsCode

2.2Anaconda

安装包:这个最新版的23年8月的,,我安装时候花的时间特别特别长(我还以为卡死了,他就是慢),留个老版本备用
更新一下最新版,安装步骤一样的,安装包也在里面
通过网盘分享的文件:vsCode+jupyter+Pytorch环境搭建
链接: https://pan.baidu.com/s/1kYnIzY1i4hH9YxK-3UHwTQ?pwd=8888

2.3Pytorch

三.主要流程

3.1安装jupyter

3.2安装Pytorch

3.3安装vsCode

3.4实现调用

3.5问题处理

四.具体步骤

4.1安装jupyter

Anaconda中内置有jupyter,下载Anaconda,然后一步步安装就好了,环境变量有时候是无法勾选的,需手动添加。

D:\Anaconda3
D:\Anaconda3\Scripts
D:\Anaconda3\Library\bin

测试安装

conda --version

在这里插入图片描述

4.2安装Pytorch

打开Anaconda Prompt,更换国内源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

创建pytorch环境
首先查看python版本,
在这里插入图片描述
python版本要对应,创建虚拟环境是为了害怕把原来的搞坏,虚拟环境坏了删了就可以了

conda create -n pytorch python=3.9

虚拟环境创建好,查看虚拟环境并激活,这块出问题的话,就是虚拟环境创建失败,就是源配置的问题,改一下就好了,也可以挂梯子

#查看虚拟环境
conda info --envs
#激活虚拟环境
activate pytorch

这里激活的还要多说一些,关于python的pip安装逻辑,和node还是有些不太一样,一开始我就搞混了

python中直接使用pip install 安装时候,是安装在全局的吗
ChatGPT
在默认情况下,当您在命令行中使用pip install安装Python包时,它将会安装在全局环境中。全局环境指的是您系统中默认的Python解释器环境。

在安装全局包时,Python会将包的文件和依赖项安装到Python解释器的安装目录中,使得它们在系统中的任何位置都可用。这意味着您可以在命令行或任何Python脚本中导入这些包,而不需要额外的配置。

然而,对于一些项目,您可能希望将包安装到特定的虚拟环境中,而不是全局环境。虚拟环境提供了一种独立于全局环境的隔离Python运行环境,允许您在同一台计算机上管理多个项目的依赖关系。

为了创建和使用虚拟环境,您可以使用Python自带的venv模块或第三方工具,如virtualenv。在虚拟环境中,您可以使用pip来安装包,这样安装的包将仅对当前虚拟环境可见,不会影响全局环境。

总结起来,在使用pip install命令安装包时,默认情况下会将包安装到全局环境中,但您也可以使用虚拟环境来实现项目的隔离和依赖管理。


我的虚拟环境实在anaconda中创建的

ChatGPT
如果您在Anaconda中创建了虚拟环境,那么您需要使用Anaconda提供的命令来激活虚拟环境。在Anaconda中,可以使用conda activate命令来激活虚拟环境。

以下是在Anaconda中激活虚拟环境的一般步骤:

打开命令行或终端。
运行命令conda activate your_env_name,其中your_env_name是您创建的虚拟环境的名称。
激活成功后,您将在命令行或终端的前缀中看到虚拟环境的名称,表示您已进入该虚拟环境。
一旦虚拟环境激活,您可以使用pip install命令安装包,这样安装的包将仅在激活的虚拟环境中可见,不会影响其他环境或全局环境。

请注意,在使用完虚拟环境后,可以使用conda deactivate命令来退出虚拟环境,返回到全局环境或其他虚拟环境。

python中安装的包了什么的,都是相对于环境来说的吧

ChatGPT
是的,Python中安装的包是相对于所使用的环境来说的。无论是全局环境还是虚拟环境,包的安装都是特定于该环境的。

当您在虚拟环境中安装包时,该包将仅对当前虚拟环境可见和可用。其他环境或全局环境不会受到此安装的影响。这是虚拟环境的一个关键优势,它允许您在同一台计算机上管理多个项目的不同依赖关系,确保它们之间的隔离性。

与之相反,如果您在全局环境中安装包,该包将对整个系统中的任何Python环境可见和可用,包括全局环境和所有虚拟环境。这可能会导致包版本冲突或其他依赖关系问题,特别是当您在多个项目中使用不同的包版本时。

因此,建议在虚拟环境中进行项目开发和包安装,以确保项目的依赖关系被正确管理,并避免全局环境的污染。

node在安装其他东西时候,如果不加Globa,他就是安装在当前文件中,是吗
ChatGPT
对于 Node.js,当您使用 npm install 命令安装包时,默认情况下它会将包安装在当前项目的本地目录中。这意味着安装的包仅对当前项目可见,并不会全局安装。

通过在命令行中运行 npm install,它将会在当前目录下的 node_modules 文件夹中安装包及其依赖项。安装的包将只在当前项目中可用,并且不会影响全局的 Node.js 安装。

这种本地安装的方式可以确保项目的依赖关系被隔离和管理,不会与其他项目产生冲突。每个项目都可以有自己独立的依赖项,并且可以通过在项目目录中运行命令来使用这些包。

如果您希望全局安装一个包,使其在系统中的任何位置都可用,可以使用 npm install -g 命令。这将会将包安装到全局的 Node.js 环境中,使其可在任何地方访问。全局安装通常用于一些命令行工具或全局可用的库。

总结起来,在 Node.js 中,默认情况下,使用 npm install 安装的包会被安装在当前项目的本地目录中,而不是全局安装。

安装Pytorch,选择相应的版本,并且复制代码,
在这里插入图片描述
输入

conda install pytorch torchvision torchaudio cpuonly -c pytorch

谷歌梯子用pip安装也行

测试进入python,输入

import torch

4.3安装vsCode

下载链接https://link.csdn.net/?target=https%3A%2F%2Fblue-sea-697d.quartiers047.workers.dev%3A443%2Fhttps%2Fcode.visualstudio.com%2F

4.4实现调用

在vsCode中搜索拓展jupyter,安装即可链接jupyter,此时jupyter无法运行pytorch,打开Anaconda Prompt

# 这是激活pytorch(名字自己取得)虚拟环境
activate pytorch
# 安装ipython,jupyter底层式ipython,
# CPython:
# CPython是Python的默认和最常用的实现,它是Python解释器的一种实现。它是用C语言编写的,并且是官方Python解释器。
# 当我们在终端中运行普通的Python代码时,实际上使用的就是CPython。CPython解释器负责将Python代码解释并转换为计算机可以理解的
# 机器代码,然后执行它。CPython的特点是稳定、成熟,以及广泛用于Python开发。

# IPython:
# IPython是一个交互式的Python解释器,是CPython的增强版。它提供了比标准Python交互解释器更多的功能和特性,使得Python的交互式编
# 程体验更加愉快和高效。IPython增加了一些功能,如代码自动补全、历史记录查找、对于大型数据集的高级显示等。此外,IPython还支持
# 命令行脚本编写和交互式数据分
conda install ipython
# 安装jupyter
conda install jupyter

此时jupyter即可使用pytorch了,随后点击右上角,更换虚拟环境即可
在这里插入图片描述

在这里插入图片描述

4.5问题处理

conda 安装环境时报错:CondaVerificationError: specified in the package manifest cannot be found.

需要使用下面的命令清除已经安装但没有安装完全的包:

// 需要使用下面的命令清除已经安装但没有安装完全的包:
conda clean --packages --tarballs

conda 安装环境时报错:CondaValueError: prefix already exists
打开图片这个路径,如果没找到的话,需要在我的电脑中打开显示隐藏文件,
进去这个路径,然后将里面的东西删除即可
在这里插入图片描述

五.参考

ModuleNotFoundError: No module named ‘torch’(anaconda安装好Pytorch却无法在Jupyter notebook使用)
在Anaconda下安装Pytorch的超详细步骤

### 如何在 VS Code 中安装并配置 PyTorch 为了实现这一目标,可以按照以下方法操作: #### 1. 安装 Visual Studio Code (VS Code) 如果尚未安装 VS Code,则需先下载并安装它。可以从其官方网站获取最新版本[^1]。 #### 2. 安装 Anaconda Anaconda 是一个集成了 Python 和众多科学计算包的发行版工具,能够简化虚拟环境管理过程。通过 Anaconda 创建一个新的虚拟环境来运行 PyTorch 可以有效隔离依赖项[^2]。 创建新环境命令如下: ```bash conda create --name myenv python=3.9 ``` 激活该环境: ```bash conda activate myenv ``` #### 3. 更新显卡驱动程序(可选) 如果你计划利用 GPU 加速训练模型,那么需要确保你的 NVIDIA 显卡驱动已更新至支持 CUDA 的最新版本。这一步对于拥有兼容硬件设备的人非常重要[^4]。 #### 4. 安装 PyTorch 访问官方文档页面 https://pytorch.org/get-started/locally/, 根据具体操作系统、CUDA 版本选择合适的安装指令执行。例如,在 Windows 上使用 Conda 进行 CPU-only 安装时,输入以下命令即可完成安装: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 如果有 GPU 支持则替换 `cpuonly` 参数为对应 cuda 版本号[^3]。 #### 5. 配置 VS Code 使用指定解释器 打开 VS Code 后按 Ctrl+Shift+P 调出命令面板,搜索 “Python: Select Interpreter”,从中挑选刚才建立好的 conda 环境中的 Python 解释器作为当前工作区使用的默认解析引擎[^5]。 验证设置成功与否可以通过终端测试导入 torch 是否无误来进行判断: ```python import torch print(torch.__version__) ``` 以上步骤完成后即完成了整个集成开发环境中关于 PyTorch 库的基础搭建任务! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值