1.5极限存在准则和重要极限

本文详细介绍了极限存在的两大准则——夹逼准则与单调有界数列准则,并通过具体例子加以说明。此外,还探讨了柯西极限存在准则,为读者提供了一个全面理解极限存在性的视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.5极限存在准则 两个重要极限

一.夹逼准则

如果数列{xn},{yn},{zn}满足

存在n0∈N+,当n>n0时,有yn≤\leqxn≤\leqzn

两个数列的极限都等于a,则xn的极限存在也为a

数列的极限推广到函数的极限

两种趋向都适用

二.单调有界数列必有极限

lim⁡x→∞(1+1n)\displaystyle \lim_{x \to \infty}(1+\frac{1}{n})xlim(1+n1)n=e

设函数f(x)在点x0的某个左邻域内单调并且有界,则f(x)在x0的做极限f(x0-)必定存在

柯西极限存在准则

数列{xn}收敛的充分必要条件是:对于任意给定的正数ϵ\epsilonϵ,存在正整数N,使得当m>N,n>N时,有

|xn-xm|<ϵ\epsilonϵ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值