【学习笔记】Java——消息队列kafka杂记

1、多个消费者

多个消费者可以组成一个群组,它们共享一个消息流,并保证整个群组对每个给定的消息只处理一次。

2、broker的配置

主题的默认配置,kafka为新创建的主题提供很多默认配置参数。

2.1 主题的默认配置 message.max.bytes

broker通过设置message.max.bytes参数来限制单个消息的大小,默认值1MB。如果生产者尝试发送的消息超过这个大小,不仅消息不回被接收,还会收到broker返回的错误信息。该参数指的是压缩后的消息大小。也就是说,只要压缩后的消息小于message.max.bytes指定的值,消息的实际大小可以远大于这个值。
这个值对性能有显著影响。值越大,那么负责处理网络连接和请求的线程就需要花越多的时间来处理这些请求。它还会增加磁盘写入块的大小,从而影响IO吞吐量。

在服务端和客户端之间协调消息大小的配置

消费者客户端设置的fetch.message.max.bytes必须与服务器端设置的消息大小进行协调。如果这个值比message.max.bytes小,那么消费者就无法读取比较大的消息,导致出现消费者被阻塞的情况。在为集群里的broker配置replica.fetch.max.bytes参数时,也遵循同样的原则。

3、硬件

磁盘性能影响生产者,而内存影响消费者。

4、生产者的配置

4.1 bootstrap.servers API以及序列化器key/value
4.2 acks

acks参数指定了必须要有多少个分区副本收到消息,生产者才会认为消息

Kafka是一个高吞吐量的分布式消息队列系统,它具有广泛的应用场景。以下是Java消息队列Kafka的一些常见应用场景: 1. 实时日志收集和分析:Kafka可以用于收集和存储大规模分布式系统的日志数据。通过将日志数据发送到Kafka集群,可以实时地将日志数据传输到各种消费者,如实时监控系统、日志分析系统等。 2. 流式处理:Kafka可以作为流式处理平台的基础,用于构建实时数据处理和分析系统。通过将数据流发送到Kafka主题,可以实现实时的数据处理和分析,如实时计算、实时推荐等。 3. 消息队列Kafka作为消息队列,可以用于解耦和缓冲不同组件之间的通信。生产者将消息发送到Kafka,消费者从Kafka订阅并处理这些消息,实现了不同组件之间的解耦和异步通信。 4. 大数据集成:Kafka可以与其他大数据技术集成,如Hadoop、Spark等。通过将数据从这些系统发送到Kafka,可以实现数据的实时传输和处理。 5. 数据备份和恢复:Kafka提供了数据持久化的功能,可以将数据写入磁盘并进行备份。这使得Kafka可以用于数据的持久化存储和故障恢复。 6. 事件驱动架构:Kafka可以作为事件驱动架构的基础,于构建高可扩展的微服务架构。通过将事件发送到Kafka,不同的微服务可以订阅并处理这些事件,实现了松耦合和可扩展的架构。 以上是Java消息队列Kafka的一些常见应用场景。根据具体的业务需求和系统架构,还可以有其他更多的应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值