§2 点集拓扑
2.1 度量空间与欧式空间
2.1.0 度量空间、收敛列、柯西列
Definition \textbf{Definition} Definition 度量空间 (距离空间)
设 X X X 为非空集,若 ∃ d : X × X → R \exists d:X\times X\to\mathbb{R} ∃d:X×X→R,满足:
- 正定性: d ( x , y ) ⩾ 0 , i f f x = y d(x,y)\geqslant 0,\ \mathrm{iff}\ x=y d(x,y)⩾0, iff x=y 取等;
- 对称性: d ( x , y ) = d ( y , x ) d(x,y)=d(y,x) d(x,y)=d(y,x);
- 三角不等式: ∀ x , y , z ∈ X : d ( x , y ) ⩽ d ( x , z ) + d ( y , z ) \forall x,y,z\in X:d(x,y)\leqslant d(x,z)+d(y,z) ∀x,y,z∈X:d(x,y)⩽d(x,z)+d(y,z)
则称 d d d 为 X X X 上的度量,称 ( X , d ) (X,d) (X,d) 为度量空间.
Definition \textbf{Definition} Definition 收敛列、 Cauchy \text{Cauchy} Cauchy 列(基本列)
设 ( X , d ) (X,d) (X,d) 为度量空间,点列 { x n } ⊆ X \{x_n\}\subseteq X {xn}⊆X
若 ∃ x ∈ X , s . t . \exists x\in X,\mathrm{s.t.} ∃x∈X,s.t.
lim n → ∞ d ( x n , x ) = 0 ⇔ lim n → ∞ x n = x \lim_{n\to\infty}d(x_n,x)=0\Leftrightarrow\lim_{n\to\infty}x_n=x n→∞limd(xn,x)=0⇔n→∞limxn=x
则称 { x n } \{x_n\} {xn} 收敛于 x x x,此时 { x n } \{x_n\} {xn} 称为 收敛列.若 ∀ ε > 0 , ∃ N ε ∈ N , s . t . ∀ m , n > N ε : \forall\varepsilon>0,\exists N_{\varepsilon}\in\mathbb{N},\mathrm{s.t.}\forall m,n>N_{\varepsilon}: ∀ε>0,∃Nε∈N,s.t.∀m,n>Nε:
d ( x m , x n ) < ε ⇔ ∣ x m − x n ∣ < ε d(x_m,x_n)<\varepsilon\Leftrightarrow|x_m-x_n|<\varepsilon d(xm,xn)<ε⇔∣xm−xn∣<ε
则称 { x n } \{x_n\} {xn} 为 柯西列.
- 收敛列必然为柯西列,反之不然.
- 柯西列必然有界.
- 存在收敛子列的柯西列一定收敛.
2.1.1 度量空间之欧式空间
度量空间中可定义多种距离,如:
d p = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p d_p=\left(\sum_{i=1}^{n}|x_i-y_i|^p\right)^{\frac{1}{p}} dp=(i=1∑n∣xi−yi∣p)p1
当 p = 1 p=1 p=1 时,称 Manhattan \text{Manhattan} Manhattan 距离;
当 p = 2 p=2 p=2 时,称 Euclidean \text{Euclidean} Euclidean 距离;
当 p → ∞ p\to\infty p→∞时,称 Chebyshev \text{Chebyshev} Chebyshev 距离( L ∞ L^{\infty} L∞ 度量):
d ∞ = max i ∣ x i − y i ∣ d_{\infty}=\max_{i}|x_i-y_i| d∞=imax∣xi−yi∣
Definition \textbf{Definition} Definition Euclidean \text{Euclidean} Euclidean 空间 (欧式空间)
∀ x = ( x 1 , ⋯ , x n ) , y = ( y 1 , ⋯ , y n ) ∈ R n : \forall x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)\in\mathbb{R}^n: ∀x=(x1,⋯,xn),y=(y1,⋯,yn)∈Rn:
d ( x , y ) = ( ∑ k = 1 n ( x k − y k ) 2 ) 1 2 d(x,y)=\left(\sum_{k=1}^{n}(x_k-y_k)^2\right)^{\frac{1}{2}} d(x,y)=(k=1∑n(xk−yk)2)21其中 ( R n , d ) (\mathbb{R}^n,d) (Rn,d) 称为 n n n 维欧几里德空间, d d d 称为欧几里得距离.
2.1.2 邻域、球体、矩体
Definition \textbf{Definition} Definition 邻域
U ( P 0 ) = U ( P 0 , δ ) = { P : d ( P , P 0 ) < δ } U(P_0)=U(P_0,\delta)=\{P:d(P,P_0)<\delta\} U(P0)=U(P0,δ)={P:d(P,P0)<δ}
Definition \textbf{Definition} Definition 开球、闭球、球面
设 ( X , d ) (X,d) (X,d) 为度量空间, r > 0 r>0 r>0,则
B ( x 0 , r ) = { x ∈ X : d ( x , x 0 ) < r } B ‾ ( x 0 , r ) = { x ∈ X : d ( x , x 0 ) ⩽ r } S ( x 0 , r ) = { x ∈ X : d ( x , x 0 ) = r } B(x_0,r)=\{x\in X:d(x,x_0)<r\} \\\overline{B}(x_0,r)=\{x\in X:d(x,x_0)\leqslant r\} \\S(x_0,r)=\{x\in X:d(x,x_0)=r\} B(x0,r)={x∈X:d(x,x0)<r}B(x0,r)={x∈X:d(x,x0)⩽r}S(x0,r)={x∈X:d(x,x0)=r}
分别称为开球(Open ball)、闭球(Closed ball)、球面(Sphere).
Definition \textbf{Definition} Definition 区间(矩体)
点集
I = { ( x 1 , ⋯ , x n ) : a i < x i < b i } I=\{(x_1,\cdots,x_n):a_i<x_i<b_i\} I={(x1,⋯,xn):ai<xi<bi}
称 n n n 维开区间(开矩体),改换不等号即为闭区间、半开半闭区间. b i − a i b_i-a_i bi−ai 称为第 i i i 个边长, ∣ I ∣ = ∏ i = 1 n ( b i − a i ) |I|=\prod\limits_{i=1}^n(b_i-a_i) ∣I∣=i=1∏n(bi−ai) 称为体积.
2.1.3 点集距离、点集直径、有界点集
Definition \textbf{Definition} Definition 两个非空点集的距离、一点到点集的距离
d ( E , F ) = inf { d ( x , y ) : x ∈ E , y ∈ F } d ( x , F ) = inf { d ( x , y ) : y ∈ F } \begin{align*} d(E,F)&=\inf\{d(x,y):x\in E,y\in F\} \\d(x,F)&=\inf\{d(x,y):y\in F\} \end{align*} d(E,F)d(x,F)=inf{d(x,y):x∈E,y∈F}=inf{d(x,y):y∈F}
Definition \textbf{Definition} Definition 一个非空点集直径
d i a m ( E ) = sup P , Q ∈ E d ( P , Q ) \mathrm{diam}(E)=\sup\limits_{P,Q\in E}d(P,Q) diam(E)=P,Q∈Esupd(P,Q)
Definition \textbf{Definition} Definition 有界点集
设 E ⊂ R n E\subset\mathbb{R}^n E⊂Rn,若
d i a m ( E ) < ∞ \mathrm{diam}(E) < \infty diam(E)<∞
则称 E E E 为有界点集(包含空集).
2.2 欧式空间的点
2.2.1 内点、外点、界点
Definition \textbf{Definition} Definition 内点、外点、界点
设 E ⊆ R n , P 0 ∈ R n E\subseteq\mathbb{R^n},P_0\in\mathbb{R^n} E⊆Rn,P0∈Rn
- 内点:
∃ U ( P 0 ) ⊆ E \exists\ U(P_0)\subseteq E ∃ U(P0)⊆E- 开核(全体内点):
E o : = { x : ∃ U ( x ) ⊆ E } \overset{o}{E}:=\{x:\exists\ U(x)\subseteq E\} Eo:={x:∃ U(x)⊆E}- 外点: P 0 P_0 P0 是 E c E^c Ec 的内点,即 ∃ U ( P 0 ) ⊆ E c \exists\ U(P_0)\subseteq E^c ∃ U(P0)⊆Ec
- 界点: P 0 P_0 P0 既非 E E E 内点也非外点. 即
∀ U ( P 0 ) : U ( P 0 ) ∩ E ≠ ϕ ∧ U ( P 0 ) ∩ E c ≠ ϕ \forall U(P_0):U(P_0)\cap E\ne\phi\wedge U(P_0)\cap E^c\ne\phi ∀U(P0):U(P0)∩E=ϕ∧U(P0)∩Ec=ϕ- 边界(全体界点): ∂ E : = { x : ∀ U ( x ) : U ( x ) ∩ E ≠ ϕ ∧ U ( x ) ∩ E c ≠ ϕ } \partial E:=\{x:\forall U(x):U(x)\cap E\ne\phi\wedge U(x)\cap E^c\ne\phi\} ∂E:={x:∀U(x):U(x)∩E=ϕ∧U(x)∩Ec=ϕ}
2.2.2 聚点、孤点
Definition \textbf{Definition} Definition 聚点、孤点
聚点: 以下三种表述等价
- (1) P 0 P_0 P0 的任何邻域都含有无穷多 E E E 的点. 即 ∀ U ( P 0 ) ∩ E 为无限集 \forall U(P_0)\cap E\ 为无限集 ∀U(P0)∩E 为无限集
- (2) P 0 P_0 P0 的任一邻域内至少含有一个属于 E E E 而异于 P 0 P_0 P0 的点. 即
∀ U ( P 0 ) ∩ E \ { P 0 } ≠ ϕ \forall U(P_0)\cap E\backslash \{P_0\}\ne\phi ∀U(P0)∩E\{P0}=ϕ- (3) 存在 E E E 中互异点列 { P n } \{P_n\} {Pn} 收敛于 P 0 P_0 P0. 即
∃ { P n } ∀ i ≠ j : P i ≠ P j ⊆ E , s . t . P n → P 0 ( n → ∞ ) \exists\underset{\forall i\ne j:P_i\ne P_j}{\{P_n\}}\subseteq E,\ \mathrm{s.t.}\ P_n\to P_0(n\to\infty) ∃∀i=j:Pi=Pj{Pn}⊆E, s.t. Pn→P0(n→∞)导集(全体聚点):
E ′ : = { x : ∀ U ( x ) : U ( x ) ∩ E \ { x } ≠ ϕ } E':=\{x:\forall U(x):U(x)\cap E\backslash \{x\}\ne\phi\} E′:={x:∀U(x):U(x)∩E\{x}=ϕ}孤立点: P 0 ∈ E P_0\in E P0∈E 但非 E E E 的聚点. 即
∃ U ( P 0 ) ∩ E = { P 0 } \exists\ U(P_0)\cap E=\{P_0\} ∃ U(P0)∩E={P0}全体孤立点: E \ E ′ = { x : ∃ U ( x ) ∩ E = { x } } E\backslash E'=\{x:\exists\ U(x)\cap E=\{x\}\} E\E′={x:∃ U(x)∩E={x}}
闭包:
E ‾ : = E ∪ E ′ = { x : ∀ U ( x ) ∩ E ≠ ϕ } = E ∪ ∂ E = E o ∪ ∂ E \begin{align*} \overline{E}&:=E\cup E'=\{x:\forall U(x)\cap E\ne\phi\} \\&\ =E\cup\partial E=\overset{o}{E}\cup\partial E \end{align*} E:=E∪E′={x:∀U(x)∩E=ϕ} =E∪∂E=Eo∪∂E
Theorem \textbf{Theorem} Theorem Bolzano-Weierstrass \text{Bolzano-Weierstrass} Bolzano-Weierstrass 定理(聚点定理)
若 E E E 为有界无限集,则 E E E 至少存在一个聚点.
2.2.3 点的关系
E ⊆ R n E\subseteq\mathbb{R}^n E⊆Rn 中的点可分类为 (1) 内点、界点、外点 或 (2) 聚点、孤点、外点.
- 内点、孤点必属于 E E E,外点必不属于 E E E,界点、聚点不一定属于 E E E.
- 孤点必为界点,界点可能是聚点或孤点.
- 内点必为聚点,聚点可能是内点或界点.
2.3 欧式空间的基本点集
2.3.1 开集、闭集、紧集、列紧集
Definition \textbf{Definition} Definition 开集、闭集
设 E ⊆ R n E\subseteq\mathbb{R^n} E⊆Rn.
开集(open set): E E E 的每个点都是 E E E 的内点. 即
E ⊆ E o ⇔ E = E o E\subseteq\overset{o}{E} \Leftrightarrow E=\overset{o}{E} E⊆Eo⇔E=Eo闭集(closed set): E E E 的每个聚点都属于 E E E. 即
E ′ ⊆ E ⇔ ∂ E ⊆ E E'\subseteq E\Leftrightarrow\partial E\subseteq E E′⊆E⇔∂E⊆E
Tips:
- 二者具有对偶性,取余集开闭互换.
- ∀ E ⊂ R n \forall E\subset\mathbb{R}^n ∀E⊂Rn,开核 E o \overset{o}{E} Eo 为开集,导集 E ′ E' E′ 、闭包 E ‾ \overline{E} E 为闭集.
- (1) 全空间 Ω \Omega Ω 、空集 ϕ \phi ϕ 既是开集又是闭集.
(2) 任意开集之并仍为开集,有限个开集之交仍为开集.
(3) 任意闭集之交仍为闭集,有限个闭集之并仍为闭集.
Theorem \textbf{Theorem} Theorem Heine-Borel-Lebesgue \text{Heine-Borel-Lebesgue} Heine-Borel-Lebesgue 定理(有限覆盖定理)
在 R n \mathbb{R^n} Rn 中有界闭集的任一开覆盖必存在有限子覆盖.
Definition \textbf{Definition} Definition 紧集、列紧集
紧集(compact set): 任一族覆盖 E E E 的开集,若可从中选出有限个开集仍然覆盖 E E E,则 E E E 为紧集. (或表述为:若 E E E 的任意开覆盖,都存在有限子覆盖,则 E E E 为紧集.)
列紧集(sequentially compact set): 设 E E E 是度量空间 X X X 中的子集,若 E E E 中的任一无穷点列必有收敛到 X X X 的子列,则称 E E E 是列紧集.
自列紧集: 若 E E E 中的任一无穷点列必有收敛到 E E E 的子列,则称 E E E 是自列紧集.(即闭的列紧集)
列紧空间: 若 X X X 本身是自列紧集,则称 ( X , d ) (X,d) (X,d) 为列紧空间.
Tips:
有限维欧式空间 R n \mathbb{R^n} Rn 中,紧集与有界闭集等价;在无穷维欧式空间 R ∞ \mathbb{R^{\infty}} R∞ 或其他空间中,二者不等价.
度量空间中,列紧集与紧集等价;一般拓扑空间中,此结论不成立.
2.3.2 自密集、完备集、完全集
Definition \textbf{Definition} Definition 自稠密集、完备集、完全集
设 E ⊆ R n E\subseteq\mathbb{R^n} E⊆Rn
自稠密集(dense in-itself set): 集合中每个点都是这个集的聚点. 或者说 无孤立点的集. 即
E ⊆ E ′ E\subseteq E' E⊆E′完备集(perfect set): 是自密集且是闭集. 或者说 没有孤立点的闭集. 即
E = E ′ E=E' E=E′完全集(complete set): 度量空间 X X X 中任意柯西列都收敛,则 X X X 为完全集.
Ex.:
R \mathbb{R} R 中有理数全体为自密集; R \mathbb{R} R 中任一闭区间及全直线为完备集.
2.3.3 直线上开、闭、完备集构造
Definition \textbf{Definition} Definition 构成区间
设 G ⊂ R 1 G\subset\mathbb{R^1} G⊂R1 为开集,若开区间 ( α , β ) ⊆ G (\alpha,\beta)\subseteq G (α,β)⊆G,且 α , β ∉ G \alpha,\beta\notin G α,β∈/G,则称 ( α , β ) (\alpha,\beta) (α,β) 为 G G G 的构成区间.
Eg: ( 0 , 1 ) ∩ ( 2 , 3 ) (0,1)\cap(2,3) (0,1)∩(2,3) 的构成区间为 ( 0 , 1 ) , ( 2 , 3 ) (0,1),(2,3) (0,1),(2,3)
Theorem \textbf{Theorem} Theorem 开集构造定理
直线上任一非空开集可表示为有限或可列个互不相交的构成区间的和集.
Definition \textbf{Definition} Definition 余区间(邻接空间)
设 F ⊂ R F\subset\mathbb{R} F⊂R 为闭集,称余集 F c F^c Fc 的构成区间为 F F F 的余区间或邻接空间.
Theorem \textbf{Theorem} Theorem
直线上的闭集 F F F 可能为 (1) 全直线 F = R 1 F=\mathbb{R}^1 F=R1,(2) 若 F ≠ R 1 F\ne\mathbb{R}^1 F=R1,即 F ⊂ R 1 F\subset\mathrm{R}^1 F⊂R1,则 F c F^c Fc 为非空开集,由开集构造定理, F c F^c Fc 可表示为有限或可列个互不相交的构成区间的和集,从而 F F F 为从直线上挖掉有限个或可列个互不相交的开区间的集合.
2.2.4 博雷尔集
详见第三章
2.2.5 康托尔三分集
Definition \textbf{Definition} Definition 稠密、疏朗集(无处稠密集)
- 设 E , F ⊂ R n E,F\subset\mathbb{R^n} E,F⊂Rn,若 ∀ x ∈ F : U ( x ) ∩ E = ϕ \forall x\in F:U(x)\cap E=\phi ∀x∈F:U(x)∩E=ϕ,则称 E E E 在 F F F 中稠密. 即 F F F 中的任一点可以被 E E E 中的点很好地逼近.
- 设 E ⊂ R n E\subset\mathbb{R^n} E⊂Rn,若 ∀ x ∈ R n , ∃ U ( y ) ⊂ U ( x ) ∩ E c \forall x\in\mathbb{R^n},\exists U(y)\subset U(x)\cap E^c ∀x∈Rn,∃U(y)⊂U(x)∩Ec,则称 E E E 是疏朗集. 即闭包不包含任何邻域.
实变函数 第一章 集合论
实变函数 第二章 点集拓扑
实变函数 第三章 测度论
实变函数 第四章 可测函数
实变函数 第五章 勒贝格积分(一)
实变函数 第五章 勒贝格积分(二)
实变函数 第五章 勒贝格积分(三)