
nlp
文章平均质量分 95
꧁ᝰ苏苏ᝰ꧂
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
nlp-生成任务-语言模型
如果您正在google的colab中打开这个notebook,您可能需要安装Transformers和????Datasets库。将以下命令取消注释即可安装。# ! pip install datasets transformers # -i https://pypi.tuna.tsinghua.edu.cn/simple如果您是在本地机器上打开这个jupyter笔记本,请确保您的环境安装了上述库的最新版本。您可以在这里找到这个jupyter笔记本的具体的python脚本文件,还可以通过分布式的方翻译 2021-09-13 17:45:54 · 1310 阅读 · 1 评论 -
nlp-生成任务-摘要生成
如果您正在google的colab中打开这个notebook,您可能需要安装Transformers和????Datasets库。将以下命令取消注释即可安装。! pip install datasets transformers rouge-score nltk分布式训练请查看 这里.微调transformer模型解决摘要生成任务在本notebook中,我们将展示如何微调 ???? Transformers中的预训练模型来解决摘要生成任务。我们使用XSum dataset数据集。这个数据集包含了B翻译 2021-09-13 17:43:34 · 3536 阅读 · 1 评论 -
nlp-生成任务-机器翻译
如果您正在google的colab中打开这个notebook,您可能需要安装Transformers和????Datasets库。将以下命令取消注释即可安装。! pip install datasets transformers sacrebleu sentencepiece如果您正在本地打开这个notebook,请确保您认真阅读并安装了transformer-quick-start-zh的readme文件中的所有依赖库。您也可以在这里找到本notebook的多GPU分布式训练版本。微调transf翻译 2021-09-13 17:42:11 · 1233 阅读 · 0 评论 -
nlp-问答任务-抽取式问答
本文涉及的jupter notebook在篇章4代码库中。建议直接使用google colab notebook打开本教程,可以快速下载相关数据集和模型。如果您正在google的colab中打开这个notebook,您可能需要安装Transformers和????Datasets库。将以下命令取消注释即可安装。# !pip install datasets transformers在机器问答任务上微调transformer模型在这个notebook中,我们将学习到如何微调???? Transfo翻译 2021-08-30 11:18:38 · 3317 阅读 · 2 评论 -
nlp-序列标注
!pip install datasets transformers seqeval如果您正在本地打开这个notebook,请确保您已经进行上述依赖包的安装。您也可以在这里找到本notebook的多GPU分布式训练版本。序列标注(token级的分类问题)序列标注,通常也可以看作是token级别的分类问题:对每一个token进行分类。在这个notebook中,我们将展示如何使用???? Transformers中的transformer模型去做token级别的分类问题。token级别的分类任务通常指的翻译 2021-08-28 23:43:27 · 950 阅读 · 0 评论 -
4.1-文本分类+超参搜索
本文涉及的jupter notebook在篇章4代码库中。也直接使用google colab notebook打开本教程,下载相关数据集和模型。如果您正在google的colab中打开这个notebook,您可能需要安装Transformers和????Datasets库。将以下命令取消注释即可安装。!pip install transformers datasets如果您正在本地打开这个notebook,请确保您已经进行上述依赖包的安装。您也可以在这里找到本notebook的多GPU分布式训练翻译 2021-08-26 14:50:37 · 564 阅读 · 0 评论 -
nlp-如何应用一个BERT
本文主要由浙江大学李泺秋撰写。前言涉及到的jupyter可以在代码库:篇章3-编写一个Transformer模型:BERT,下载Transformers 版本 4.4.2,pytorch 版的 BERT 相关代码,从代码结构、具体实现与原理,以及使用的角度进行分析,包含以下内容:BERT-based Models应用模型BERT训练和优化Bert解决NLP任务BertForSequenceClassificationBertForMultiChoiceBertForTokenClas翻译 2021-08-23 21:52:36 · 869 阅读 · 1 评论 -
nlp-如何实现编写BERT模型
致谢本文主要由浙江大学李泺秋撰写。前言建议通过pycharm、vscode等工具对bert源码进行单步调试,调试到对应的模块再对比看讲解。涉及到的jupyter可以在代码库:篇章3-编写一个Transformer模型:BERT,下载本篇章将基于HuggingFace/Transformers, 48.9k Star进行学习。本章节的全部代码在huggingface bert,注意由于版本更新较快,可能存在差别,请以4.4.2版本为准HuggingFace 是一家总部位于纽约的聊天机器人初创服务商,翻译 2021-08-22 19:01:23 · 589 阅读 · 0 评论 -
(科普)-nlp-图解BERT+GPT
图解BERT在学习完Transformer之后,我们来学习一下将Transformer模型结构发扬光大的一个经典模型:BERT。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3q9V8Olo-1629380895512)(./pictures/3-stru.png)]图:结构总览前言BERT在2018年出现。2018 年是机器学习模型处理文本(或者更准确地说,自然语言处理或 NLP)的转折点。我们对这些方面的理解正在迅速发展:如何最好地表示单词和句子,从而最好地捕捉基翻译 2021-08-20 15:49:13 · 2207 阅读 · 0 评论 -
(科普)nlp-图解Attention+Transformer
图解Attentionseq2seq模型NLP常用于生成任务的seq2seq结构。如:机器翻译、文本摘要、图像描述生成。谷歌翻译在 2016 年年末开始使用这种模型。有2篇开创性的论文:Sutskever等2014年发表的Sequence to Sequence Learningwith Neural Networks和Cho等2014年发表的Learning Phrase Representations using RNN Encoder–Decoderfor Statistical Machi翻译 2021-08-17 16:29:20 · 1316 阅读 · 0 评论