使用 python 实现 Logistic 回归

本文介绍了Logistic回归的原理,包括预测函数、代价函数和参数更新,并详细解析了使用Python实现逻辑回归的代码,包括关键函数实现、模型训练与预测、模型效果对比,展示了一种自定义算法与sklearn库的比较。


这节课我们将使用 numpy 实现 逻辑回归算法,然后利用我们自己写的算法在乳腺癌数据集上进行癌症诊断!有了上一章线性回归的代码基础,这一章的算法实现也就非常简单了,下面我们先来回顾一下上节课所学的几个关键公式。

原理回顾

预测函数

在上节课中我们推导出了单个样本上逻辑回归的预测函数:
预测函数
由此我们可以写出批量样本上的预测函数表达式:

预测函数表达式
有没有似曾相识的感觉呢?其实就是在第三章线性回归的预测函数上套了一个 Sigmoid 函数,我们将其写成如下的矩阵乘法形式:
矩阵乘法

代价函数

代价函数在这里指的就是经验风险:模型在训练集上的平均损失。上节课我们说过二项逻辑回归的损失函数是对数损失,它在整个训练集上的对数损失为:

评论 221
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

꧁༺北海以北的等待༻꧂

欢迎为萌新程序员打赏~谢谢各位

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值