- 博客(21)
- 收藏
- 关注
原创 【Web后端】Django、flask及其场景——以构建系统原型为例
Django 是一个高级 Python Web 框架,提供了完整的“开箱即用”功能,包括 ORM、认证、管理后台等,便于快速开发安全且可维护的网站。Flask 是一个轻量级 Python Web 框架,核心功能比较简单,但扩展性chao强,适合小型项目或需要高度定制化的场景。
2025-08-16 18:56:53
810
原创 【目标检测】芯片缺陷识别中的YOLOv12模型、FP16量化、NMS调优
YOLOv12是YOLO(You Only Look Once)系列目标检测模型的最新演进版本,以注意力机制为核心,专注于高效、高精度的目标检测任务,在芯片缺陷识别等工业场景中表现优异。其核心改进包括更轻量的网络结构、增强的特征融合机制以及优化的训练策略,通过局部感受野(特定卷积核一顿操作猛如……哦不,牛Bplus,得到卷积结果,)改善输入数据,降低计算成本,显著提升了小目标(如微米级芯片缺陷)的检测能力。
2025-08-01 10:49:01
1096
原创 【笔记分享】集合的基数、群、环、域
本文摘要: 集合基数部分介绍了基数概念及其在有限与无限集合中的应用,通过映射关系(单射、满射、双射)比较集合大小。重点分析了常见集合(N, Z, Q, R)的基数特性及证明方法,包括康托尔对角线法。还探讨了幂集基数和基数运算规则。 群、环、域部分分别定义了三类代数结构及其性质:群满足封闭性、结合律、单位元和逆元;环在群基础上增加乘法半群和分配律;域则要求非零元乘法可交换且存在逆元。最后比较了直积与直和的区别,强调直和在无限情况下仅允许有限个非单位元分量。全文系统性地介绍了抽象代数中集合基数和基本代数结构的核
2025-07-10 22:43:47
932
原创 【Algorithms】Example Usage of Finding K Closest Elements
【代码】【Algorithms】Example Usage of Finding K Closest Elements。
2025-06-16 18:19:12
471
原创 广播电视系统技术原理:DSP(Digital Signal Processing)、调制与解调、编码与解码、图像压缩
广播电视系统从制作到接收包含五大环节:节目制作、播出、传输、发射和监测。信号传输采用卫星、有线及无线方式,涉及调制、加密、多路复用等技术。数字信号处理(DSP)技术通过傅里叶变换、滤波等算法提升信号质量。香农-韦弗模型揭示了信息传输的编码解码过程,图像压缩技术如MPEG-2、H.264等有效减小数据量以保证高效传输。这些技术与原理共同支撑着现代广播电视系统的数字化、网络化发展。
2025-06-15 11:20:08
716
原创 【笔记】创建个人知识库+Text2SQL调用
构建个人知识库能够借助大语言模型实现高效检索,保护隐私数据,并整合本地文档便于管理。其创建步骤包括:选择工具(如Notion、Obsidian)、分类存储、定期更新、建立知识网络。技术实现上,可用LangChain框架搭建本地知识库,结合向量数据库存储嵌入向量。通过Text2SQL技术,可将自然语言转换为SQL查询,高效检索结构化或非结构化数据。关键优势包括降低技术门槛、高效检索和灵活性。注意事项包括优化提示词、验证查询结果及设置数据权限。此外,性能优化可引入查询缓存机制提升效率。
2025-06-13 19:12:32
1096
原创 【笔记分享】高阶线性微分方程解:常数变易法、欧拉公式、待定系数法
该方法本质上是将齐次方程通解中的常数(如C1,C2)视为变量,从而把常数替换为函数,再代入原方程求解出特解。但在工程应用中,二阶及以上(高阶)线性微分方程更为常见、应用较多,例如,注:欧拉搞了许多公式与定理,在解微分方程这里显然讨论的是复变函数领域,其中。m是多项式次数,k情况①=0,k情况②=1,k情况③=2.(13)括号里的两项是共轭的,相加后没有了虚部,于是,,x为实变量时,仍成立,即,对于欧拉公式。R‘’(x)必须是m次多项式,此时,:λ是特征方程(12)的重根,即,(10)是方程(3)的通解。
2025-05-05 00:54:55
998
原创 【泛函分析】共鸣定理、逆算子定理、闭图像定理、Hanh-Banach延拓定理
本文涉及泛函分析-有界线性算子-几个重要结论。部分现行教科书对此语焉不详,但这些结论对泛函分析学科发展实质上起到较重大作用,且在学术界和工业界有广泛应用。
2025-04-18 12:46:53
1032
原创 【电路/器件设计】区分MOSFET、MESFET与MODFET
当下,Si MOSFET(金属氧化物半导体场效应晶体管)依旧引领器件市场,同时还有其他的晶体管器件,如MESFET(金属半导体FET)、MODFET(调制掺杂场效应晶体管)等等。LDMOS的电流是横向流动的,优点包括但不限于由于该结构在漏压较高时耗尽漂移区,因此导通电阻比较小,而且因为避免了使用键合引线,它的工作速度比较高。L较短的器件具备较好噪声性能,与此同时,MODFET相比MESFET增加了一层AlGaAs势垒,意味着它能承受更高栅压。二维电子气的屏蔽力是提高迁移率的关键原因。
2025-03-11 19:35:25
625
原创 【概率论与信号处理】随机向量、高斯四阶矩、非线性变换(nonlinear Transformation)的期望
后者应用概率论知识,实现对信号处理问题的研究,衍生出多样的结论与方法,本文围绕一些常见概念和理论:随机向量、高斯四阶矩、非线性变换(nonlinear Transformation)的期望作一些特别讨论或相关讨论。非线性是种玄学东西,它与线性的概念的关系好比“人类”与“非人类”两个词组的关系,即,我们通常情况下知道“人类”是指什么,但不知道“非人类”具体是指哪一种。利用该函数的一些性质,特别是它可以被积分,方便了计算,使之在信号的采样、筛选、卷积、复合、拉普拉斯变换等方面进行操作。
2025-02-13 21:51:07
1066
原创 【数学应用】定解问题的Fourier变换、Laplace变换、Poisson积分公式(续篇)
所谓偏微分方程的正问题,即,说白了就是在一个具体的物理过程、现象或问题中存在唯一一个解,但是数学偏微分方程是有无穷多个解。通过为偏微分方程附加特定而且通常是确定的条件,比如(或状态),研究把握某数学物理系统的状态及其变化规律。解决定解问题,除了常用的方法例如行波法分离变量法……(本文暂不讨论),还有如下积分变换的解法,方便了问题的研究。
2025-01-20 19:19:21
527
原创 【数学应用】定解问题的Fourier变换、Laplace变换、Poisson积分公式(琐事繁忙,先发部分内容,未完后续补充谢谢理解!)
在一个具体的物理过程、现象或问题中存在唯一一个解,但是数学偏微分方程是有无穷多个解。通过为偏微分方程附加特定而且通常是确定的条件,比如(或状态),研究把握某数学物理系统的状态及其变化规律。解决定解问题,除了常用的方法例如行波法分离变量法……(本文暂不讨论),还有如下积分变换的解法,方便了问题的研究。
2025-01-04 01:03:55
530
原创 【动态更新】理论及应用:高斯函数、高斯公式、斯托克斯公式
当且仅当a=1/c√2π,高斯积分为1,高斯函数为正态分布函数。*式(5)给出了封闭曲面积分和相应的体积分之间的变换关系,等号左边微分形式,等号右边积分形式,实际上是一回事。设空间闭区域Ω是由分片光滑的闭曲面Σ围成,若函数P(x,y,z),Q(x,y,z),R(x,y,z)在Ω上具有一阶连续偏导数,则有。其中,cosα,cosβ,cosγ是Σ在点(x,y,z)处的法向量的方向余弦,Σ是整个Ω边界曲面外侧。
2024-12-14 23:31:18
3951
原创 微积分基本定理、格林公式、曲线积分和曲面积分的计算
牛顿-莱布尼茨公式告诉我们,一个区域上导数的积分与边界处的值有关。在一元函数积分学中,我们知道若区间ab上的连续函数fxdxdF∫abF′xdxFb−Fa1。
2024-12-03 14:52:27
1631
原创 【数字电路】全加器、半加器、三极管与逻辑运算
数字电路在现代社会有重要且广泛应用,如计算机和处理器、通信和网络、消费电子、智能家居。用数字信号完成对数字量进行算术运算或逻辑运算的电路称为,又称数字系统,或数字逻辑运算。本文介绍基本的数字电路运算器件——半加器和全加器,半导体器件——三极管,及其构成的基本逻辑运算。最后拓展介绍三极管逻辑门电路发展趋势,以供参考。
2024-10-15 17:19:20
2601
原创 【笔记分享】二重积分的计算
如同众所周知,一重积分,即定积分,用于求曲边梯形的面积,二重积分是用于求曲顶柱体的体积,二重积分为被积函数f(x,y)作累积而得。如果被积函数类似于f(x^2+y ^2),f(x/y),f(y/x)等形式,或积分区域为圆或者圆的一部分,优先选择极坐标系;注意,如果D既不是X型区域也不是Y型区域,可以把D分为几个部分,使得每一个部分是X型区域或Y型区域。此时极点O在区域D外部,α≤θ≤β,φ1(θ)≤r≤φ2(θ),此时极点O在区域D内部,0≤θ≤2π,0≤r≤φ(θ),注意,这个并不是绝对的方法。
2024-01-19 16:24:44
4724
1
原创 【博弈分析】公共财问题整理
一个重要假设是v是G的函数,v=v(G)。仔细观察一阶条件,发现每个村民只考虑对自己养的影响,而不是对所有羊的影响,因此,最优点上个人边际成本小于社会边际成本,纳什均衡总饲养量大于社会最优饲养量。这意味着,在缺乏约束的条件下,当存在过度放牧问题时,每个村民虽然明知公地会退化,但个人博弈的最优策略只能是 增加放养羊只的数量,久而久之,公地面临彻底退化。比较社会最优一阶条件和个人最优一阶条件,可以看出G*>G**,和社会最优放养条件相比,纳什均衡时放养羊的总数过多,公有草地被过度使用了。
2022-10-21 21:23:30
1352
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人