acm板子

1、求最大公因数(__gcd)

ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}

2、快速幂(数的快速幂、矩阵快速幂)

(1)数的快速幂

ll qkpow(ll a,ll b) //a^b
{
    ll ans=1;
     while(b)
    {
      if(b&1) ans*=a;
      a*=a;
      b/=2;
    }
   return ans;
}

(2)矩阵快速幂

typedef long long ll;
struct M {int a[100][100];};
M ans;
M Matrix(M a,M b) //a*b
{
    M c;
    memset(c.a,0,sizeof(c.a));
    for(int i=0;i<100;i++){
        for(int j=0;j<100;j++){
            for(int k=0;k<100;k++)
            {
                c.a[i][j]+=a.a[i][k]*b.a[k][j];
            }
        }
    }
    return c;
}
M jzpowm(M a,ll b) //a^b
{
    memset(ans.a,0,sizeof(ans.a));
    for(int i=0;i<100;i++) ans.a[i][i]=1;//单位矩阵
     while(b)
    {
       if(b&1) ans=Matrix(ans,a);
       a=Matrix(a,a);
       b/=2;
    }
   return ans;
}

3、背包问题

(1)01背包
即有N种物品,一个容量为V的背包,每件物品只能使用一次。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int N;int V;//N种物品,背包容量为V
int v[1005];int w[1005];
int f[1005];
int main()
{
    cin>>N>>V;
    for(int i=1;i<=N;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=N;i++){
        for(int j=V;j>=v[i];--j){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[V]<<endl;
    return 0;
}

(2)完全背包
即有N种物品,一个容量为V的背包,每件物品可以使用无限次。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int N;int V;//N种物品,背包容量为V
int v[1005];int w[1005];
int f[1005];
int main()
{
    cin>>N>>V;
    for(int i=1;i<=N;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=N;i++){
        for(int j=v[i];j<=V;++j){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[V]<<endl;
    return 0;
}

(3)多重背包
即有N种物品,一个容量为V的背包,每种物品可都有特定的数量。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int N;int V;//N种物品,背包容量为V
int v[1005];int w[1005];int s[1005];
int f[1005];
int main()
{
    cin>>N>>V;
    for(int i=1;i<=N;i++) cin>>v[i]>>w[i]>>s[i];
    for(int i=1;i<=N;i++){
        for(int num=1;s[i];num<<=1){
            num=min(num,s[i]);
        for(int j=V;j>=num*v[i];j--){
             f[j]=max(f[j],f[j-num*v[i]]+num*w[i]);
        }
           s[i]-=num;
        }
    }
    cout<<f[V]<<endl;
    return 0;
}

4、同余方程。欧几里得扩欧

求:关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。

#include<iostream>
using namespace std;
long long a,b,d,x,y;
void exgcd(long long a,long long b,long long &d,long long &x,long long &y){
    if(!b){d=a;x=1;y=0;return ;}
    exgcd(b,a%b,d,y,x);y-=x*(a/b);
}
int main(){
    cin>>a>>b;
    exgcd(a,b,d,x,y);
    x%=b;
    if(x<0) x+=b;
    cout<<x<<endl;
    return 0;
}

5、组合数问题(C(n,m))

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int c[2001][2001];
void build() //求组合数模板  C(n,m) 
{
    c[0][0]=1;
    c[1][0]=c[1][1]=1;
    for(int i=2;i<=2000;i++)
    {
        c[i][0]=1;
        for(int j=1;j<=i;j++)
        {
            c[i][j]=c[i-1][j-1]+c[i-1][j];
        }
    }
}
int main()
{
	int n,m;
	cin>>n>>m;
	build();
	cout<<c[n][m];
}

5、高精加 ( A + B )

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAX=300;
int main()
{
    char A[MAX],B[MAX];
    scanf("%s %s",A,B);
    int la=strlen(A);
    int lb=strlen(B);
    int a[MAX]={0},b[MAX]={0},c[MAX];
    for(int i=0;i<la;i++)
    {
        a[i]=A[la-i-1]-'0';
    }
    for(int i=0;i<lb;i++)
    {
        b[i]=B[lb-i-1]-'0';
    }
    int t=0;
    int temp;
    for(int i=0;i<la||i<lb;i++)
    {
        temp=a[i]+b[i]+t;
        c[i]=temp%10;
        t=temp/10;
    }
    if(t)cout<<t;
    for(int i=0;i<max(la,lb);i++)
    {
        cout<<c[max(la,lb)-1-i];
    }

    return 0;
}

6、并查集

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxx=2e4+5;
int father[maxx];
int f(int x){
	if(father[x]==x) return x;
	else return father[x]=f(father[x]);//不能写成 f(father[x]),一定要对father[x]进行修改,要不然时间会超限。 
}
void unioni(int a,int b){
	int fa=f(a);
	int fb=f(b);
	if(fa!=fb) father[fa]=fb;
}
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++) father[i]=i;
	 for(int i=1;i<=m;i++){
	 	int x,y;
	 	cin>>x>>y;
	 	unioni(x,y);
	 }
	 int q;
	 scanf("%d",&q);
	 for(int i=1;i<=q;i++){
	 	int s,d;
	 	scanf("%d%d",&s,&d);
	 	if(f(s)==f(d)) printf("Yes\n");
	 	else printf("No\n");
	 }
   	
   return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值