1、求最大公因数(__gcd)
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
2、快速幂(数的快速幂、矩阵快速幂)
(1)数的快速幂
ll qkpow(ll a,ll b) //a^b
{
ll ans=1;
while(b)
{
if(b&1) ans*=a;
a*=a;
b/=2;
}
return ans;
}
(2)矩阵快速幂
typedef long long ll;
struct M {int a[100][100];};
M ans;
M Matrix(M a,M b) //a*b
{
M c;
memset(c.a,0,sizeof(c.a));
for(int i=0;i<100;i++){
for(int j=0;j<100;j++){
for(int k=0;k<100;k++)
{
c.a[i][j]+=a.a[i][k]*b.a[k][j];
}
}
}
return c;
}
M jzpowm(M a,ll b) //a^b
{
memset(ans.a,0,sizeof(ans.a));
for(int i=0;i<100;i++) ans.a[i][i]=1;//单位矩阵
while(b)
{
if(b&1) ans=Matrix(ans,a);
a=Matrix(a,a);
b/=2;
}
return ans;
}
3、背包问题
(1)01背包
即有N种物品,一个容量为V的背包,每件物品只能使用一次。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int N;int V;//N种物品,背包容量为V
int v[1005];int w[1005];
int f[1005];
int main()
{
cin>>N>>V;
for(int i=1;i<=N;i++) cin>>v[i]>>w[i];
for(int i=1;i<=N;i++){
for(int j=V;j>=v[i];--j){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[V]<<endl;
return 0;
}
(2)完全背包
即有N种物品,一个容量为V的背包,每件物品可以使用无限次。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int N;int V;//N种物品,背包容量为V
int v[1005];int w[1005];
int f[1005];
int main()
{
cin>>N>>V;
for(int i=1;i<=N;i++) cin>>v[i]>>w[i];
for(int i=1;i<=N;i++){
for(int j=v[i];j<=V;++j){
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[V]<<endl;
return 0;
}
(3)多重背包
即有N种物品,一个容量为V的背包,每种物品可都有特定的数量。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int N;int V;//N种物品,背包容量为V
int v[1005];int w[1005];int s[1005];
int f[1005];
int main()
{
cin>>N>>V;
for(int i=1;i<=N;i++) cin>>v[i]>>w[i]>>s[i];
for(int i=1;i<=N;i++){
for(int num=1;s[i];num<<=1){
num=min(num,s[i]);
for(int j=V;j>=num*v[i];j--){
f[j]=max(f[j],f[j-num*v[i]]+num*w[i]);
}
s[i]-=num;
}
}
cout<<f[V]<<endl;
return 0;
}
4、同余方程。欧几里得扩欧
求:关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。
#include<iostream>
using namespace std;
long long a,b,d,x,y;
void exgcd(long long a,long long b,long long &d,long long &x,long long &y){
if(!b){d=a;x=1;y=0;return ;}
exgcd(b,a%b,d,y,x);y-=x*(a/b);
}
int main(){
cin>>a>>b;
exgcd(a,b,d,x,y);
x%=b;
if(x<0) x+=b;
cout<<x<<endl;
return 0;
}
5、组合数问题(C(n,m))
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int c[2001][2001];
void build() //求组合数模板 C(n,m)
{
c[0][0]=1;
c[1][0]=c[1][1]=1;
for(int i=2;i<=2000;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
{
c[i][j]=c[i-1][j-1]+c[i-1][j];
}
}
}
int main()
{
int n,m;
cin>>n>>m;
build();
cout<<c[n][m];
}
5、高精加 ( A + B )
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAX=300;
int main()
{
char A[MAX],B[MAX];
scanf("%s %s",A,B);
int la=strlen(A);
int lb=strlen(B);
int a[MAX]={0},b[MAX]={0},c[MAX];
for(int i=0;i<la;i++)
{
a[i]=A[la-i-1]-'0';
}
for(int i=0;i<lb;i++)
{
b[i]=B[lb-i-1]-'0';
}
int t=0;
int temp;
for(int i=0;i<la||i<lb;i++)
{
temp=a[i]+b[i]+t;
c[i]=temp%10;
t=temp/10;
}
if(t)cout<<t;
for(int i=0;i<max(la,lb);i++)
{
cout<<c[max(la,lb)-1-i];
}
return 0;
}
6、并查集
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxx=2e4+5;
int father[maxx];
int f(int x){
if(father[x]==x) return x;
else return father[x]=f(father[x]);//不能写成 f(father[x]),一定要对father[x]进行修改,要不然时间会超限。
}
void unioni(int a,int b){
int fa=f(a);
int fb=f(b);
if(fa!=fb) father[fa]=fb;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) father[i]=i;
for(int i=1;i<=m;i++){
int x,y;
cin>>x>>y;
unioni(x,y);
}
int q;
scanf("%d",&q);
for(int i=1;i<=q;i++){
int s,d;
scanf("%d%d",&s,&d);
if(f(s)==f(d)) printf("Yes\n");
else printf("No\n");
}
return 0;
}