什么是spark
Spark是一个基于内存的开源计算框架,用于分布式处理大规模数据。它可以大幅提升数据处理的速度和效率。Spark支持多种编程语言(如Java、Python和Scala),并且可以与Hadoop等大数据平台配合使用。Spark不仅可以处理批处理任务,还支持流处理、SQL查询、机器学习等多种任务类型。Spark具有易于使用的API、高性能和可靠性等特点。
特点
Spark是一种快速、通用、可扩展的集群计算系统,最初由加州大学伯克利分校的AMPLab开发。Spark在大数据处理领域具有显著的优势,因为它具有以下特点:
-
快速:相比于传统的Hadoop MapReduce等技术,Spark的内存计算能力非常强大,可以极大地提高数据处理的速度。
-
易用:Spark提供了丰富的API和内置工具,使开发者能够轻松编写分布式、高效的应用程序。
-
可扩展性:Spark采用基于内存的计算方式,可以处理巨大的数据量,同时还支持水平扩展,使得系统可以方便地添加更多的节点来处理更大规模的数据。
-
处理多种不同类型的数据:Spark不仅支持批处理模式,还支持流处理和交互式查询,同时还支持各种数据源如HDFS、Cassandra、HBase、MongoDB等。
因此,Spark凭借其高速、易用、可扩展和多样的功能成为了当今大数据处理领域中最为热门和流行的技术之一。
Spark的作业提交流程
Apache Spark的作业提交流程通常包括以下几个步骤:
-
准备环境:
在提交Spark应用程序之前,需要将所需的依赖项进行打包,并将相关文件上传到集群上。例如,在Java或Scala中编写Spark应用程序时,您可能会使用Maven进行依赖管理并构建JAR文件。 -
配置参数:
根据你的应用类型和需求,可以通过Spark submit命令行或者设置spark-defaults.conf文件来配置一系列的参数。这些参数将决定Spark作业的运行方式。 -
提交应用程序:
利用’spark-submit’命令将已经打好依赖包的应用程序 submitted 到 一个 Spark Standalone Cluster (本地/远程) , YARN, or Mesos cluster 上。 -
运行作业:
一旦已成功上传应用程序,即可将作业提交给Spark执行器以运行它。作业提交后,Spark会启动所需的资源(如内存和CPU),然后开始运行代码。 -
查看日志与监控:
通过查看Spark作业中生成的日志和监控信息,可以帮助确定任何问题并优化性能。以便更好的调整和 debug 应用程序在不同环境下的运行。
虽然这是一般的步骤。但实际上真正执行的细节取决于平台、环境、部署模式和所需的特定功能等等。
spark作业执行过程
Spark作业执行过程一般包括以下几个步骤:
-
创建SparkContext:在Spark应用程序中,首先需要创建一个SparkContext对象。这个对象是连接Spark集群的入口,它负责与集群中的节点通信,并启动应用程序以及调度任务的执行。
-
加载数据:接下来就是从数据源中加载数据到Spark内存中。可以使用多种不同的方式加载数据,包括Hadoop文件系统、Hive、HBase、MySQL等等。
-
对数据进行转换:一旦数据被加载到内存中,就可以使用Spark提供的各种转换操作对其进行处理。转换操作包括过滤、排序、聚合、映射等等。
-
缓存数据:在实际的Spark应用程序中,往往需要多次访问同一个数据集。如果每次都需要重新计算,会大大影响性能。因此,为了避免重复计算,可以将数据缓存在内存中,以便后续再次使用。
-
执行Spark作业:在数据加载和转换操作结束之后,Spark会将整个作业划分成多个阶段,每个阶段包含若干个任务。然后,Spark会将这些任务分发给集群中的各个节点进行计算。每个节点上的任务都是并行执行的,因此可以高效地完成数据处理工作。
-
输出结果:当Spark作业执行结束后,可以将最终结果输出到文件系统、数据库、Kafka等数据源中。
因此,Spark作业的执行过程是一个典型的ETL(Extract-Transform-Load)过程,它涵盖了从数据提取到结果输出的整个生命周期。