题目描述
有一个m×m的棋盘,棋盘上每一个格子可能是红色、黄色或没有任何颜色的。你现在要从棋盘的最左上角走到棋盘的最右下角。
任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的), 你只能向上、 下、左、 右四个方向前进。当你从一个格子走向另一个格子时,如果两个格子的颜色相同,那你不需要花费金币;如果不同,则你需要花费 1个金币。
另外, 你可以花费 2 个金币施展魔法让下一个无色格子暂时变为你指定的颜色。但这个魔法不能连续使用, 而且这个魔法的持续时间很短,也就是说,如果你使用了这个魔法,走到了这个暂时有颜色的格子上,你就不能继续使用魔法; 只有当你离开这个位置,走到一个本来就有颜色的格子上的时候,你才能继续使用这个魔法,而当你离开了这个位置(施展魔法使得变为有颜色的格子)时,这个格子恢复为无色。
现在你要从棋盘的最左上角,走到棋盘的最右下角,求花费的最少金币是多少?
输入格式
第一行包含两个正整数m,n,以一个空格分开,分别代表棋盘的大小,棋盘上有颜色的格子的数量。
接下来的n行,每行三个正整数x,y,c, 分别表示坐标为(x,y)的格子有颜色cc。
其中c=1代表黄色,c=0代表红色。 相邻两个数之间用一个空格隔开。 棋盘左上角的坐标为(1, 1),右下角的坐标为( m, m)。
棋盘上其余的格子都是无色。保证棋盘的左上角,也就是(1, 1) 一定是有颜色的。
输出格式
一个整数,表示花费的金币的最小值,如果无法到达,输出-1。
输入
5 7
1 1 0
1 2 0
2 2 1
3 3 1
3 4 0
4 4 1
5 5 0
输出
8
输入
5 5
1 1 0
1 2 0
2 2 1
3 3 1
5 5 0
输出
-1
#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
#define mod 1000000007
#define ll long long
#define ull unsigned long long
#define mem(a) memset(a,0,sizeof(a))
#define cio ios::sync_with_stdio(false);
int next[4][2] = {{-1,0},{0,-1},{0,1},{1,0}};
int s[110][110];
int vis[110][110];
int p[110][110];
struct node
{
int x, y;
}q[100010];
int minn = mod;
int n, m;
int flag = 0;
void dfs(int xx, int yy, int sum,int k)
{
if(sum>=p[xx][yy]) return; // 如果到达该点花费已经大于等于当前到达该点得最小值,那么就不用继续搜索下去了
p[xx][yy] = sum; //更新到达该点得最小值
if(xx==n&&yy==n){ //到达终点
flag = 1; //标记可以到达终点
minn = min(minn,sum); //更新最小花费
return;
}
for(int i = 0; i < 4; i++){
int tx = xx+next[i][0];
int ty = yy+next[i][1];
if(tx<1||tx>n||ty<1||ty>n) continue;
if(s[tx][ty]!=0){ //该点有色
if(s[xx][yy]==s[tx][ty]){
dfs(tx,ty,sum,0); //相同不花费
}else{
dfs(tx,ty,sum+1,0); //不同花费+1
}
}else{
if(k==0){ //判断是否刚使用过魔法
s[tx][ty] = s[xx][yy]; //改变该点颜色
dfs(tx,ty,sum+2,1); //花费+1,标记使用魔法
s[tx][ty] = 0; //回溯
}
}
}
}
int main()
{
cio;
cin >> n >> m;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++) p[i][j] = mod; //初始化(1,1)到各点得最小花费为1e9
}
for(int i = 0; i < m; i++){
int xx, yy, c;
cin >> xx >> yy >> c;
if(c==0){ //区别,没有颜色得格子
s[xx][yy] = 2;
}else{
s[xx][yy] = c;
}
}
dfs(1,1,0,0);
if(flag) cout << minn << endl;
if(!flag) cout << -1 << endl;
return 0;
}
下面T掉得代码,跟上面得区别就是剪枝不同,没有存储到该点得最小花费,采用得是标记走过得点,再回溯,我没有好的优化办法,有兴趣可以看看,指点一手。
#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
#define mod 1000000007
#define ll long long
#define ull unsigned long long
#define mem(a) memset(a,0,sizeof(a))
#define cio ios::sync_with_stdio(false);
int next[4][2] = {{-1,0},{0,-1},{0,1},{1,0}};
int s[110][110];
int vis[110][110];
struct node
{
int x, y;
}q[100010];
int n, m;
int minn = mod;
int flag = 0;
void dfs(int xx, int yy, int sum,int k)
{
if(xx==n&&yy==n){
flag = 1;
minn = min(minn,sum);
return;
}
if(sum>=minn) return;
for(int i = 0; i < 4; i++){
int tx = xx+next[i][0];
int ty = yy+next[i][1];
if(tx<1||tx>n||ty<1||ty>n) continue;
if(vis[tx][ty]==0){
vis[tx][ty] = 1;
if(s[tx][ty]!=0){
if(s[xx][yy]==s[tx][ty]){
dfs(tx,ty,sum,0);
}else{
dfs(tx,ty,sum+1,0);
}
}else{
if(k==0){
s[tx][ty] = s[xx][yy];
dfs(tx,ty,sum+2,1);
s[tx][ty] = 0;
}
}
vis[tx][ty] = 0;
}
}
}
int main()
{
cio;
cin >> n >> m;
for(int i = 0; i < m; i++){
int xx, yy, c;
cin >> xx >> yy >> c;
if(c==0){
s[xx][yy] = 2;
}else{
s[xx][yy] = c;
}
}
vis[1][1] = 1;
dfs(1,1,0,0);
if(flag) cout << minn << endl;
if(!flag) cout << -1 << endl;
return 0;
}