求和n个数异或和最小的数

给定一组数,目标是找到一个数w,当它与这组数中每个数进行异或操作后,所有异或结果的和达到最小。解决方法是将数转化为二进制,统计每位上1的个数,w取对应位上1较多的值,再转回十进制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 给定n个数s[0],s[1],s[2],s[3]…s[n-1],求一个数w,使得w ^s [0]+w ^ s[1]+w ^ s[2]…w ^ s[n-1]的和最小。
  • 思路:将n个数化为二进制数,统计n个数在每位二进制上1的个数,w的二进制取n个数每位二进制上个数多的(1或0),然后转化为十进制数w。
#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
#define mod 1000000007
#define INF 0x3f3f3f
#define fi first
#define se second
#define it iterator
#define ins insert
#define mp make_pair
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define np next_permutation
#define pq priority_queue
#define ll long long
#define ull unsigned long long
#define mem(a) memset(a,0,sizeof(a))
#define cio ios::sync_with_stdio(false)
#define gcd __gcd
ll lgcd(ll a,ll b){return b == 0? a:lgcd(b, a % b);}
int lowbit(int x){return x&(-x);}
#define T int t;scanf("%d",&t);while(t--)
#define Ce cout << endl
#define CE(n) cout << n << endl
#define C(n) cout << n;
#define CY cout << "YES" << 
#define CN cout << "NO" << endl
#define Cy cout << "Yes" << endl
#define Cn cout << "No" << endl

int s[10010];  
int q[40];
void div(int x)
{
    int k = 0;
    while(x!=0){
        int y = x%2;
        q[k++] += y;
        x /= 2;
    }
}
 
int main()
{
    int n;
    cin >> n;
    for(int i = 0; i < n; i++) cin >> s[i];
    for(int i = 0; i < n; i++) div(s[i]);
    int w = 0;
    for(int i = 0; i < 32; i++){
        if(n-q[i]<q[i]){   // n是总个数,减去1的个数就是0的个数
            w += pow(2,i);
        }
    }
    cout << w << endl;
    int r = 0;
    for(int i = 0; i < n; i++){
        r += w^s[i];
    }
    cout << r << endl;
    return 0;
}
### 线性基在求最大异或中的作用 #### 异或运算原理 异或运算是二进制位上的逻辑运算,遵循以下规则:两个相同比特的结果为 `0`,不同则为 `1`。例如,`1 XOR 1 = 0` `1 XOR 0 = 1`。由于其特殊的性质——交换律、结合律以及自反性(任何与自己异或结果为 `0`),它成为许多算法问题的核心工具之一[^2]。 #### 线性基的作用 线性基是一种能够有效处理一组整间相互关系的据结构,尤其适用于涉及异或操作的问题。它的主要特性如下: - 它是一个最小化的集合,其中每个元素都无法通过其余成员的异或组合生成。 - 这种独特属性确保了原集中所有可能产生的异或值都可以由线性基内的有限量项重新构建出来[^1]。 这些特点使线性基非常适合用来解答关于最大化或者寻找特定条件下最优解等问题,比如本案例中的“最大异或”。 #### 使用原因分析 为了获得最大的异或,我们需要考虑的是如何挑选合适的子集使得最终得到的整体效果最佳化。然而直接枚举所有的可能性通常是不可行的因为时间复杂度太高(O(2^n))。此时引入线性基就显得尤为重要因为它提供了以下几个优势: 1. **减少候选目**: 利用线性独立原则筛选掉那些可以通过已有选定向量合成的新向量从而大大降低搜索空间大小; 2. **保持原有价值范围不变**: 即便进行了压缩转换过程仍能保证原来值体系所能表达的一切潜在结果得以保留下来[^3]; 3. **便于查找极值点**: 当完成了上述准备工作之后就可以很方便地依据高位优先的原则逐步试探直至定位全局最优点为止[^4]. 综上所述,借助于线性基不仅可以显著提升效率而且还能保障准确性因此成为了此类挑战的理想解决方案。 ```python class LinearBasis: def __init__(self): self.basis = [0]*64 def insert(self,x): for i in reversed(range(64)): if x&(1<<i): if not self.basis[i]: self.basis[i]=x return True else: x^=self.basis[i] return False def get_max_xor(self): res=0 for b in self.basis[::-1]: if(res^b)>res: res=res^b return res # Example Usage lb = LinearBasis() for val in [9,8,7,6]: lb.insert(val) print(lb.get_max_xor()) # Output should be the maximum xor sum achievable from these numbers. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值