投资问题(动态规划)C++

本文详细介绍了投资问题的动态规划求解方法,通过C++实现。利用递推方程`Fk(x)=max{fk(xk)+Fk-1(x-xk)}`和边界条件,找出使投资总效益最高的分配策略。核心代码复杂度为O(nm^2)`,并提供了GitHub源码供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

投资问题(动态规划)C++

问题

设m元钱,n项投资,函数fi(x)表示将x元投入到第i项项目中所产生的效益,i=1,2,3…n
问:如何分配这m元钱,使得投资的总效益最高?
在这里插入图片描述

解析

假设分配给第 i 个项目的钱数是 xi,问题描述为:
目标函数:max{f1(x1)+f2(x2)+…+fn(xn)}
约束条件:x1+x2+…+xn=m,xi∈N;

设Fk(x)表示x元投给前k个项目的最大效益,k=1,2,…,n,x=1,2,…,m
递推方程:Fk(x)=max{fk(xk)+Fk-1(x-xk)}(0≤xk≤x),k=2,3,…,n
边界条件:F1(x)=f1(x),Fk(0)=0,k=1,2,…,n

*说明:第k步,前后共分配x万元,

分配给第k个项目xk;
x-xk万元,分配给前k-1个项目;

设计

For k=1,2,…,n //第k个项目
 For x=0,1,2,…,m //k个项目共分配x元
  For xk=0,1,2,…,x //第k个项目分配xk
   Fk(x)=max{fi(xk)+Fk-1(x-xk)}//递推公式
核心代码:

 for (i = 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

『gorgeous』

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值