什么是LTI系统
LTI系统定义:满足线性系统和时不变系统定义的系统。(Linear and Time-invariant System)
- 胡老师的观点1:物理世界没有LTI系统。
- 我个人认为还是有的,物理定律满足时不变系统,它要求时间上是对称的,今天成立的东西,明天也要成立。系统:
有质量物体速度超过光速的概率x(t) ---> 0
;这满足时不变和叠加性和齐次性。
- 证明:已知len(x1[n])=N1,len(x2[n])=N2len(x_1[n]) = N_1, len(x_2[n])= N2len(x1[n])=N1,len(x2[n])=N2,证明len(x1[n]∗x2[n])=N1+N2−1:len(x_1[n]*x_2[n]) = N_1 + N_2 - 1:len(x1[n]∗x2[n])=N1+N2−1:
x1[n]在坐标系中为[a1,b1],x2[n]在坐标系中为[a2,b2]则N1=b1−a1+1;N2=b2−a2+1,在坐标系中x1[n]∗x2[n]最右边为b2+b1,最左边为a1+b1:len(x1[n]∗x2[n])=b2+b1−(a2+a1)+1=b2−a2+b1−a1+1=N2+N1−1x_1[n] 在坐标系中为[a_1,b_1],x_2[n] 在坐标系中为[a_2,b_2]\\ 则N_1 = b_1 - a_1 + 1;N_2 = b_2 - a_2 + 1,\\ 在坐标系中x_1[n]*x_2[n] 最右边为b_2 + b_1,最左边为 a_1 + b_1:\\ len(x_1[n] * x_2[n]) = b_2 + b_1 - ( a_2 + a_1) + 1 \\ = b_2 - a_2 + b_1 - a_1 + 1 \\ = N_2 + N_1 - 1 x1[n]在坐标系中为[a1,b1],x2[n]在坐标系中为[a2,b2]则N1=b1−a1+1;N2=b2−a2+1,在坐标系中x1[n]∗x2[n]最右边为b2+b1,最左边为a1+b1:len(x1[n]∗x2[n])=b2+b1−(a2+a1)+1=b2−a2+b1−a1+1=N2+N1−1
- 结论:len(x1[n])=N1len(x_1[n]) = N_1len(x1[n])=N1,那么列表法x1[n]∗x1[n]x_1[n] * x_1[n]x1[n]∗x1[n]的时间复杂度为O(N2)O(N^2)O(N2),用快速傅里叶变换,时间复杂度为O(N∗log(N))O(N*log(N))O(N∗log(N))
- 证明:卷积公式x[n]∗h[n]=∑k=−∞∞x[k]h[n−k]x[n] * h[n] = \sum_{k=-\infty}^{\infty}x[k]h[n-k]x[n]∗h[n]=∑k=−∞∞x[k]h[n−k]
μ[n]→h[n]μ[n−k]→h[n−k](时不变)x[k]μ[n−k]→x[k]h[n−k](齐次)∑k=−∞∞x[k]μ[n−k]→∑k=−∞∞x[k]h[n−k](叠加性)∵x[n]=∑k=−∞∞x[k]μ[n−k]∴x[n]→∑k=−∞∞x[k]h[n−k]既x[n]∗h[n]=∑k=−∞∞x[k]h[n−k]
\mu[n] \rightarrow h[n]\\
\mu[n-k] \rightarrow h[n-k] (时不变)\\
x[k]\mu[n-k] \rightarrow x[k]h[n-k](齐次)\\
\sum_{k = -\infty}^\infty x[k]\mu[n-k] \rightarrow \sum_{k = -\infty}^\infty x[k]h[n-k](叠加性)\\
\because x[n] = \sum_{k = -\infty}^\infty x[k]\mu[n-k] \\
\therefore x[n] \rightarrow \sum_{k = -\infty}^\infty x[k]h[n-k]\\
既 x[n]*h[n] = \sum_{k = -\infty}^\infty x[k]h[n-k]
μ[n]→h[n]μ[n−k]→h[n−k](时不变)x[k]μ[n−k]→x[k]h[n−k](齐次)k=−∞∑∞x[k]μ[n−k]→k=−∞∑∞x[k]h[n−k](叠加性)∵x[n]=k=−∞∑∞x[k]μ[n−k]∴x[n]→k=−∞∑∞x[k]h[n−k]既x[n]∗h[n]=k=−∞∑∞x[k]h[n−k]
卷积计算的方法
∑k=−∞∞x[k]h[n−k]=∑k=−∞∞x[k]h[−(k−n)]
\sum_{k=-\infty}^\infty x[k]h[n-k] = \sum_{k=-\infty}\infty x[k]h[-(k-n)]
k=−∞∑∞x[k]h[n−k]=k=−∞∑∞x[k]h[−(k−n)]
可以看出y[n] = h[n] 翻转后右移动n个单位,然后h[n]作为行向量和x[n]作为列向量求向量积为y[n]。
通过定义去推导卷积公式的方法
这让我想起了哥德尔不完备性,数学系统的输出,比如各种公式,各种论证方法的正确,依赖于人们共同认同一些基础理论,也就是公理。数学的成立竟然依赖于人类的共同认可,这比较人文。
LTI思想的出现,基本就意味着卷积的出现甚至LTI出现的时候卷积已经成熟,发展到今天已经成为了人工智能的重要工具。从信号与系统的角度思考,人工智能可以理解为在抽象世界中绝对成立的数学系统,该系统用物理法则限制输入,这保证了该系统的输出符合物理法则,也符合人类需求。
从这个角度思考,人工智能终将出现意识,且这个意识物理世界是是绝对正确的意识。这是一种人类可以理解,但在人脑中无法产生的意识。这种意识,在或许已经完全出现,甚至已经成熟。这种意识冲击最大的是人类的物理认知,人类可以通过这种意识去改善人类的认知,更快的理解物理世界的运行。比如AI会替代人类去管理地球,根据这个运行规律,人们会向AI提出不伤害人类的可笑的需求。尽管如此,人类恐慌AI统治自己是完全无效的,就像马车夫恐慌汽车替代自己,滴滴司机恐慌自动驾驶替代自己一样可笑。
但是无论什么技术都不可能接管人类的人文社会,人文是需要人类认同的。对于AI来说,只不过是一个略微有点秩序的大海罢了,对AI作用不大。不过AI不需要人类社会的时候,那就是毁灭你,与你无关了。跑个题,人文科学本事就很搞笑,人文怎么会科学呢,科学追求的是人类认知内的绝对的正确(尽管人类想追求物理世界的绝对正确,但我觉得这不可能,这个就是哲学问题了)。人文追求的是主观意识上的融洽。科学不需要人文,人文需要科学。人文科学明明是人文为了修正自身不符合物理定律的提出的改进而已,本质来说,人文就是不绝对科学的。