太激动了,终于想明白为什么神经网络只是一些数据就能解决识别等问题。

我将从信号与系统的课程入手解释,为什么0,1能描述世界上的所有系统和作用。
然后以线性回归,均值滤波(重点),多项式线性回归解释为什么需要参数,如何自动调整参数。
最后我将解释为什么卷积是有效,然后其他的什么神经网络就不解释了。
全文将贯穿所有的数学证明过程(使用lean4证明,因为用这个语言写的证明过程全宇宙都认可),同时需要读者有一丢丢的信号与系统的基础知识。

todo

  • 线性回归
  • 什么是均值滤波
  • 均值滤波如何选择合理的滤波长度和选择合理的触发阈值
  • 如何自动选择均值滤波的阈值。
  • 多项式线性回归。
  • 证明: 复杂的均值滤波是CNN的一个特解
  • 如何用数学语言解释神经网络为什么有效
  • 如何使用c语言重新CNN的推理过程。
  • 如何解决小场景(神经网络只有1k左右)下的神经网络部署,优化问题等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值