我将从信号与系统的课程入手解释,为什么0,1能描述世界上的所有系统和作用。
然后以线性回归,均值滤波(重点),多项式线性回归解释为什么需要参数,如何自动调整参数。
最后我将解释为什么卷积是有效,然后其他的什么神经网络就不解释了。
全文将贯穿所有的数学证明过程(使用lean4证明,因为用这个语言写的证明过程全宇宙都认可),同时需要读者有一丢丢的信号与系统的基础知识。
todo
- 线性回归
- 什么是均值滤波
- 均值滤波如何选择合理的滤波长度和选择合理的触发阈值
- 如何自动选择均值滤波的阈值。
- 多项式线性回归。
- 证明: 复杂的均值滤波是CNN的一个特解
- 如何用数学语言解释神经网络为什么有效
- 如何使用c语言重新CNN的推理过程。
- 如何解决小场景(神经网络只有1k左右)下的神经网络部署,优化问题等。