随机变量的分布函数

随机变量的分布函数

对于离散型随机变量而言,我们可以一一列举出随机变量的取值,其概率分布可以用分布律来表示,而对于非离散型随机变量,不能一一列举出其取值,不能用分布律描述,因此如何给出一个统一性的方法研究随机变量的概率分布,这就用到了分布函数的概念

定义

X X X是一个随机变量, x x x是任意实数,则函数
F ( x ) = P { X ≤ x } , − ∞ < x < + ∞ F(x)=P\{X \le x\},-\infty<x<+\infty F(x)=P{Xx},<x<+
称为 X X X的分布函数。

定义域: x ∈ ( − ∞ , + ∞ ) x\in (-\infty,+\infty) x(,+)

值域: 0 ≤ F ( x ) ≤ 1 0\le F(x)\le 1 0F(x)1

**应用:**给定 x 1 , x 2 ( x 1 < x 2 ) x_1,x_2(x_1<x_2) x1,x2(x1<x2) P { x 1 < X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } = F ( x 2 ) − F ( x 1 ) P\{x_1<X\le x_2\}=P\{X\le x_2\}-P\{X\le x_1\}=F(x_2)-F(x_1) P{x1<Xx2}=P{Xx2}P{Xx1}=F(x2)F(x1),注意是左开右闭区间

几何表示

X X X看成数轴上的随机点的坐标,那么分布函数 F ( x ) F(x) F(x) x x x处的函数值就表示 X X X落在区间 ( — ∞ , x ] (—\infty,x] (—∞,x]上的概率。

image-20240515105116662

性质(一个函数是分布函数的充要条件)
  1. F ( x ) F(x) F(x)是单调不减函数,即对任意 x 1 < x 2 x_1<x_2 x1<x2,有 F ( x 1 ) ≤ F ( x 2 ) F(x_1)\le F(x_2) F(x1)F(x2)

    image-20240515105421685

  2. 0 ≤ F ( X ) ≤ 1 0\le F(X)\le 1 0F(X)1 lim ⁡ x → − ∞ = 0 \lim\limits_{x \to -\infty}=0 xlim=0 lim ⁡ x → + ∞ = 1 \lim\limits_{x \to +\infty}=1 x+lim=1,概率是有界的,当 x → − ∞ x\to-\infty x时, X ≤ x X\le x Xx趋于不可能事件,因此概率趋向0;当 x → + ∞ x\to +\infty x+时, X ≤ x X\le x Xx趋于必然事件,因此概率趋向1。

  3. F ( x ) F(x) F(x)是右连续的,即对任意 x 0 x_0 x0 lim ⁡ x → x 0 + F ( x ) = F ( x 0 ) \lim\limits_{x \to x_0^+}F(x)=F(x_0) xx0+limF(x)=F(x0),现有知识无法证明,可通过函数图像理解。

离散型随机变量的分布函数

以一道例题引入:

image-20240515110342234

可以通过数轴来辅助计算,经过简单计算可以得到:

image-20240515110515412

需要注意计算的分段区间是左闭右开的,根据计算出来的分布函数可以画出图像:

image-20240515110921230

根据该图像,我们有两点发现,这也是离散型随机变量分布函数图像的一些性质:

  1. 离散型随机变量的分布函数图像是阶梯型曲线
  2. F ( x ) F(x) F(x) x k x_k xk处有跳跃值 P { X = x k } P\{X=x_k\} P{X=xk}

接下来可以利用分布函数来计算概率:

image-20240515111819107

反过来如果根据分布函数求分布律,只需要找跳跃值即可。

连续性随机变量的分布函数

通过一道例题引入:

image-20240515112121561

经过计算我们可以得到分布函数及其图像:

image-20240515112211775

可以发现连续性随机变量的分布函数图像是连续的,和离散型随机变量的随机函数有所区别。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值