随机变量的分布函数
对于离散型随机变量而言,我们可以一一列举出随机变量的取值,其概率分布可以用分布律来表示,而对于非离散型随机变量,不能一一列举出其取值,不能用分布律描述,因此如何给出一个统一性的方法研究随机变量的概率分布,这就用到了分布函数的概念
定义
设
X
X
X是一个随机变量,
x
x
x是任意实数,则函数
F
(
x
)
=
P
{
X
≤
x
}
,
−
∞
<
x
<
+
∞
F(x)=P\{X \le x\},-\infty<x<+\infty
F(x)=P{X≤x},−∞<x<+∞
称为
X
X
X的分布函数。
定义域: x ∈ ( − ∞ , + ∞ ) x\in (-\infty,+\infty) x∈(−∞,+∞)
值域: 0 ≤ F ( x ) ≤ 1 0\le F(x)\le 1 0≤F(x)≤1
**应用:**给定 x 1 , x 2 ( x 1 < x 2 ) x_1,x_2(x_1<x_2) x1,x2(x1<x2), P { x 1 < X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } = F ( x 2 ) − F ( x 1 ) P\{x_1<X\le x_2\}=P\{X\le x_2\}-P\{X\le x_1\}=F(x_2)-F(x_1) P{x1<X≤x2}=P{X≤x2}−P{X≤x1}=F(x2)−F(x1),注意是左开右闭区间
几何表示
将 X X X看成数轴上的随机点的坐标,那么分布函数 F ( x ) F(x) F(x)在 x x x处的函数值就表示 X X X落在区间 ( — ∞ , x ] (—\infty,x] (—∞,x]上的概率。
性质(一个函数是分布函数的充要条件)
-
F ( x ) F(x) F(x)是单调不减函数,即对任意 x 1 < x 2 x_1<x_2 x1<x2,有 F ( x 1 ) ≤ F ( x 2 ) F(x_1)\le F(x_2) F(x1)≤F(x2)
-
0 ≤ F ( X ) ≤ 1 0\le F(X)\le 1 0≤F(X)≤1; lim x → − ∞ = 0 \lim\limits_{x \to -\infty}=0 x→−∞lim=0, lim x → + ∞ = 1 \lim\limits_{x \to +\infty}=1 x→+∞lim=1,概率是有界的,当 x → − ∞ x\to-\infty x→−∞时, X ≤ x X\le x X≤x趋于不可能事件,因此概率趋向0;当 x → + ∞ x\to +\infty x→+∞时, X ≤ x X\le x X≤x趋于必然事件,因此概率趋向1。
-
F ( x ) F(x) F(x)是右连续的,即对任意 x 0 x_0 x0, lim x → x 0 + F ( x ) = F ( x 0 ) \lim\limits_{x \to x_0^+}F(x)=F(x_0) x→x0+limF(x)=F(x0),现有知识无法证明,可通过函数图像理解。
离散型随机变量的分布函数
以一道例题引入:
可以通过数轴来辅助计算,经过简单计算可以得到:
需要注意计算的分段区间是左闭右开的,根据计算出来的分布函数可以画出图像:
根据该图像,我们有两点发现,这也是离散型随机变量分布函数图像的一些性质:
- 离散型随机变量的分布函数图像是阶梯型曲线
- F ( x ) F(x) F(x)在 x k x_k xk处有跳跃值 P { X = x k } P\{X=x_k\} P{X=xk}
接下来可以利用分布函数来计算概率:
反过来如果根据分布函数求分布律,只需要找跳跃值即可。
连续性随机变量的分布函数
通过一道例题引入:
经过计算我们可以得到分布函数及其图像:
可以发现连续性随机变量的分布函数图像是连续的,和离散型随机变量的随机函数有所区别。