【gmoj】 【扩欧】 鱼跃龙门
题目
解题思路
题意
就是求1~x的和能整除n
高斯求和公式是x(x+1)/2
也就是说x(x+1)/2=n
移项x(x+1)=2n
设ap=x+1,bq=x
ap-bq=gcd(a,b)
要求出最小的bq(x)
已知b,就只求出q即可
就变成了扩欧里的ax+by=gcd(a,b)求最小的y
因为gcd(a,b)=1 说明a,b互质
而abp*q=2n说明a,b必包含组成2n的所有因子
预处理出小于1e+6的质数
将2n分解质因数,组成a,b
推导过程咱也不会,背板子先了
代码
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const long long inf=10000000000000;
int t,w,tot,prm[1000020];
bool p[1000010];
ll n,x,y,ans,zc[110000];
void exgcd(ll a,ll b,ll &x,ll &y) //扩欧
{
if (!b) //当b=0时,a一定为1,就有特殊解,x=1,y=0
{
x = 1, y = 0;
return;
}
ll x2=x,y2=y;
exgcd(b,a%b,x2,y2); //类似gcd求法
x = y2; //gcd时a会等于上一次b,同理
y = x2-(a/b)*y2; //y会等于上一次a%b,变为x-(a/b)*y
}
void dfs(int id,ll a,ll b) //枚举每个质因数在a,还是b
{
if (id>tot) //已经分成a,b两数
{
x=y=0;
exgcd(a,b,x,y); //求解
y=-y%a; //y应是一负数,将其取反
if (y<=0) y+=a;
y=y*b;
ans=min(ans,y);
return;
}
dfs(id+1,a*zc[id],b);
dfs(id+1,a,b*zc[id]);
}
int main()
{
for (int i=2;i<=1e+6;i++) //预处理出质数
if (!p[i])
{
prm[++t]=i;
for (int j=2;j<=1e+6/i;j++)
p[i*j]=1;
}
scanf("%d",&w);
while (w--)
{
tot=0,ans=inf;
scanf("%lld",&n);
n=2*n;
for (int i=1;i<=t&&prm[i]<=n;i++) //分解n的质因数
if (n%prm[i]==0)
{
zc[++tot]=1;
while (n%prm[i]==0)
{
n/=prm[i];
zc[tot]*=prm[i];
}
if (n==1) break;
}
if (n!=1) zc[++tot]=n;
dfs(1,1,1);
printf("%lld\n",ans);
}
}