【gmoj】 【扩欧】 鱼跃龙门

本文讲解了一道关于求1到x的和能整除n的数学问题,通过高斯求和公式和扩欧算法(扩展欧几里得算法),找到满足条件的最小x值。博主详细介绍了解题思路,并给出了C++代码实现,涉及质数预处理、分解质因数和应用扩欧求解gcd的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【gmoj】 【扩欧】 鱼跃龙门

题目

在这里插入图片描述
在这里插入图片描述


解题思路

题意
就是求1~x的和能整除n

高斯求和公式是x(x+1)/2
也就是说x(x+1)/2=n
移项x(x+1)=2n
设ap=x+1,bq=x
ap-bq=gcd(a,b)
要求出最小的bq(x)
已知b,就只求出q即可
就变成了扩欧里的ax+by=gcd(a,b)求最小的y
因为gcd(a,b)=1 说明a,b互质
而abp*q=2n说明a,b必包含组成2n的所有因子
预处理出小于1e+6的质数
将2n分解质因数,组成a,b
推导过程咱也不会,背板子先了


代码

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const long long inf=10000000000000;
int t,w,tot,prm[1000020];
bool p[1000010];
ll n,x,y,ans,zc[110000];
void exgcd(ll a,ll b,ll &x,ll &y)  //扩欧
{
	if (!b)   //当b=0时,a一定为1,就有特殊解,x=1,y=0
	{
	    x = 1, y = 0; 
		return;
	}
	ll x2=x,y2=y;
	exgcd(b,a%b,x2,y2);  //类似gcd求法
	x = y2;  //gcd时a会等于上一次b,同理
	y = x2-(a/b)*y2;  //y会等于上一次a%b,变为x-(a/b)*y
}
void dfs(int id,ll a,ll b)  //枚举每个质因数在a,还是b
{  
	 if (id>tot)  //已经分成a,b两数
	 {
	 	x=y=0;
	 	exgcd(a,b,x,y);   //求解
	 	y=-y%a;  //y应是一负数,将其取反
	 	if (y<=0) y+=a;
	 	y=y*b; 
	 	ans=min(ans,y); 
	 	return;
	 }
	 dfs(id+1,a*zc[id],b);
	 dfs(id+1,a,b*zc[id]);
}
int main()
{
	for (int i=2;i<=1e+6;i++)  //预处理出质数
	    if (!p[i])
	    {
	       prm[++t]=i;    
	       for (int j=2;j<=1e+6/i;j++)
	           p[i*j]=1;
		}
	scanf("%d",&w);
	while (w--)
	{
		  tot=0,ans=inf;
		  scanf("%lld",&n);
		  n=2*n; 
		  for (int i=1;i<=t&&prm[i]<=n;i++)  //分解n的质因数
		      if (n%prm[i]==0)
		      {
		      	 zc[++tot]=1; 
		      	 while (n%prm[i]==0) 
				 {
				        n/=prm[i]; 
					    zc[tot]*=prm[i];
				 }
		      	 if (n==1) break; 
			  } 
		   if (n!=1) zc[++tot]=n; 
		   dfs(1,1,1);
		   printf("%lld\n",ans);
	}
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值