【gmoj】【树状数组】【st表】No Time to Dry

本文详细介绍了洛谷P7416题目的解题过程,主要涉及树状数组和ST表的数据结构。通过预处理和区间查询,解决了一种特定条件下的区间操作问题。代码中展示了如何利用树状数组进行区间求和与ST表找到区间最小值,从而优化算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【gmoj】【树状数组】【st表】No Time to Dry

题目

洛谷 P7416
在这里插入图片描述
在这里插入图片描述


解题思路

qwq,第一题放紫题,人麻了
看到区间想到树状数组 or 线段树
手推一下会发现区间[l…r]且s[l]==s[r]时,如果中间有数小于s[l],那么s[r]必须要靠操作一次来涂色
那么先预处理出一个bf数组维护当前颜色上一次出现的位置
如果当前和上一次之间没有比它们小的,说明涂色可以传递,那就在上一次出现的位置+1加一次操作如果上一次位置不在区间内,是要加1的,如果在区间内不影响结果
否则要单独涂一次,直接在1加一次操作
最后答案是ans[i]=get(r,l)-get(l,l)
get(i,j)表示进行到第i块木板时前j块模板用到的操作次数


代码

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
struct lzf{
	int l,r,z,id;
}f[400010];
int n,q,l,r,t,j=1,d[200010],mi[200010][30],bf[200010],v[200010],ans[200010];
bool cmp(lzf l,lzf y)
{
	 return l.r<y.r;
}
int query(int l,int r)  //st表,找区间最小
{
	int k=log2(r-l+1); 
	return min(mi[l][k],mi[r-(1<<k)+1][k]);
}
void add(int x,int y)  //区间加
{
	 for (;x<=n;x+=x & (-x))
	     d[x]+=y;
}
int get(int x)  //区间求和
{
	int sum=0;
	for (;x;x-=x & (-x))
	    sum+=d[x];
	return sum;
}
int main()
{
	scanf("%d%d",&n,&q);
	for (int i=1;i<=n;i++)
	{
		scanf("%d",&mi[i][0]);
		bf[i]=v[mi[i][0]];  //存上一次出现的位置
		v[mi[i][0]]=i;  
	}
	for (int i=1;i<=q;i++)
	{
		scanf("%d%d",&l,&r);
		if (l>1) f[++t]=(lzf){l,l-1,-1,i};
		f[++t]=(lzf){l,r,1,i};
	}
	sort(f+1,f+t+1,cmp);
	for (int j=1;j<=21;j++)
	    for (int i=1;i+(1<<j)-1<=n;i++)
	        mi[i][j]=min(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
	for (int i=1;i<=n;i++)
	{
		int x=query(bf[i]+1,i);
		if (x<mi[i][0]) add(1,1);
		   else add(bf[i]+1,1);
		while (f[j].r==i&&j<=t) 
		{
		      ans[f[j].id]+=get(f[j].l)*f[j].z;
		      j++;
		}
	}
	for (int i=1;i<=q;i++)
	    printf("%d\n",ans[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值