自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 目标检测之DETR(DEtection TRansformer)

Lmatch−1ci≠∅pσici1ci≠∅Lboxbibσi(1)Lmatch​−1ci​∅​p​σi​ci​1ci​∅​Lbox​bi​bσi​​11ci≠∅1ci​∅​是一个指示函数,当第iii个物体有有效类别时取值为 1,否则为 0;cic_ici​表示第iii个物体的真实类别;σi\sigma(i)σi表示与第ii。

2025-06-05 15:31:12 926

原创 目标检测之Yolov5

YOLOv5的核心实现逻辑主要包含三部分:网络结构采用CSPDarknet53作为Backbone提取特征,改进的PANet作为Neck进行多尺度特征融合,Head则输出三尺度预测结果(P3-P5);锚框机制通过K-means聚类和遗传算法自动生成多尺度锚框,并采用0.5IoU阈值的正负样本匹配策略;损失函数综合CIoU定位损失、BCE置信度损失和分类损失(BCE/CE),通过超参数平衡多尺度总损失。这种设计实现了高精度实时目标检测,后续无锚点版本YOLOv5u进一步提升了模型灵活性。

2025-06-01 18:11:53 672

原创 目标检测之Faster R-CNN

阶段任务分类损失回归损失是否只对正样本回归RPN二分类交叉熵损失Smooth L1✅ 是Fast R-CNN多分类Softmax + 交叉熵Smooth L1(多类)✅ 是这种设计是 Faster R-CNN 成功的重要原因之一,为后续如 Mask R-CNN、RetinaNet 等提供了统一思路。

2025-05-31 15:46:51 968

原创 Faster R-CNN的RPN 位置回归损失

在 Faster R-CNN 的 RPN(Region Proposal Network)模块中,模型需要对每个 anchor 不仅判断其是否包含目标(前景/背景分类),还要对正样本 anchor 的位置进行微调,使其更接近真实目标框(Ground Truth)。这个微调过程对应的位置回归损失是 RPN 损失的重要组成部分。Anchor 是一组固定形状和大小的矩形框,用来覆盖整张图像。该函数结合了 L2 的平滑与 L1 的鲁棒性。,以更好地拟合目标框。网络的目标是学习预测这组回归值。

2025-05-31 15:28:00 791

原创 目标检测之Fast R-CNN

Fast R-CNN针对R-CNN的局限性进行了关键改进:通过单次卷积生成整张图像的共享特征图,避免了重复计算;引入ROI池化层将候选区域统一缩放为固定尺寸;采用多任务损失函数实现端到端训练,同时优化分类和定位任务。这些创新显著提升了训练效率和检测速度,解决了R-CNN训练复杂、特征重复提取和测试速度慢的问题。网络结构包含共享特征图生成、候选区域映射和双分支输出(分类与回归),成为目标检测领域的重要里程碑。

2025-05-30 16:07:15 1035

原创 目标检测之R-CNN

R-CNN是目标检测领域的里程碑式方法,采用两阶段检测框架:首先生成候选区域(Selective Search算法提取约2000个候选框),然后对每个区域进行CNN特征提取、SVM分类和边界框回归。其核心创新在于将深度卷积网络引入目标检测,显著提升了检测精度。虽然存在计算冗余大、非端到端训练等缺陷,但为后续Fast R-CNN等改进奠定了基础,开创了深度学习目标检测的新范式,广泛应用于自动驾驶、视频监控等领域。

2025-05-28 18:48:57 587

原创 混淆矩阵和分类常用指标(AUC,AUPR,Accuracy,Precision,Recall和F1-score)的计算及其详解

在计算各个分类指标前,博主准备了两个预训练二分类模型,并在测试集上测试它们,获得对应的预测分数和预测标签,其。)[1] 是一个用于描述分类模型性能的工具。它用于总结分类算法在测试数据集上的表现情况。:正类一般是研究中所关注的一类样本。对指标的计算我们借助机器学习库。

2024-07-16 11:57:51 1132

原创 Python利用Seaborn绘制UMAP散点图

UMAPUniformManifoldAProjection)是一种用于降维的非线性技术,主要用于高维数据的可视化和探索 [1]。它可以将高维数据嵌入到低维空间(通常是二维或三维),以便我们可以更容易地观察数据的结构和模式。UMAP在处理大规模数据时表现良好,特别是在保持局部和全局结构方面有较好的平衡。它广泛应用于各种数据科学和机器学习任务,例如聚类、分类、和降维。可视化高维数据分布时,可借助UMAP先将高维数据投影到二维空间,再利用Seaborn。

2024-06-02 13:22:25 1226

原创 Python利用Seaborn绘制ROC和PR曲线以及AUC与AUPR的计算

ROC曲线 [1], [2](ReceiverOperatingCharacteristic Curve,接收者操作特征曲线)是一种用于评估二分类模型性能的重要工具。ROC曲线通过不同阈值下的真阳性率(True Positive Rate, TPR)和假阳性率(False Positive Rate, FPR)的变化情况,直观地展示模型的分类能力。具体而言,ROC曲线的横轴表示假阳性率,纵轴表示真阳性率。假阳性率是指将负样本错误地分类为正样本的比例,而真阳性率是指将正样本正确地分类为正样本的比例。

2024-06-01 17:23:25 2609

原创 Python使用Matplotlib和Seaborn绘制箱线图

箱线图是一种用作显示一组数据分布情况的统计图。它能显示出一组数据的最大值、最小值、中位数、及上下四分位数,甚至还可以显示出数据的均值。本文用Python的绘图工具包Matplotlib和Seaborn绘制箱线图。

2024-05-30 20:56:15 2620 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除