箱型图相关

1.箱形图显示六个数据:

组成部分含义
最小值(Min)除异常值之外的数据中的最小值
下四分位数(Q1)25% 的数据小于该值(第1四分位数)
中位数(Q2)数据的中间值,50% 的数据小于该值
上四分位数(Q3)75% 的数据小于该值(第3四分位数)
最大值(Max)除异常值之外的数据中的最大值
异常值(Outliers)超过上下须线范围的数据点,通常用点或星号表示

在这里插入图片描述
1.异常值的计算
箱型图中使用的是1.5倍IQR法则(Tukey’s Rule)来判断异常值:

下界(下限) = Q1 - 1.5 × IQR

上界(上限) = Q3 + 1.5 × IQR

凡是:

小于下界的值,被认为是下异常值

大于上界的值,被认为是上异常值

IQR的计算:
IQR = Q3 - Q1

<think>好的,我需要帮助用户了解如何使用Matplotlib或Seaborn绘制箱型图。首先,我应该回忆一下这两个库的相关功能。用户提到的是箱型图,我记得Seaborn在这方面比较方便,而Matplotlib虽然也能实现,但代码可能稍复杂。 接下来,我应该检查用户提供的引用内容。引用[2]中有一个使用Seaborn绘制箱线图的例子,代码用了sns.boxplot,并且加载了'tips'数据集。引用[3]提到了安装库和Matplotlib的基础,可能涉及到基本绘图步骤。而引用[1]主要展示折线图,可能不太相关。 用户的问题是如何绘制箱型图,所以我需要分步骤说明,可能先介绍Seaborn的方法,因为更简洁,再提到Matplotlib的方式。需要确保代码示例正确,并且符合用户引用的内容。例如,引用[2]中的代码可以作为Seaborn的示例,而Matplotlib可能需要用plt.boxplot。 另外,用户可能对参数设置、数据准备和样式调整感兴趣,比如如何添加标题、调整颜色等。需要提到这些点,并结合引用中的例子,比如使用palette参数设置颜色方案,如'coolwarm',以及如何用plt.title添加标题,如引用[2]所示。 还要注意用户提到的安装步骤,引用[3]中有安装命令,所以可能需要提醒用户先安装库,如果还没有的话。但用户的问题直接是关于绘制,所以可能安装步骤可以作为补充信息,放在注意事项里。 最后,生成相关问题的时候,可能需要包括如何调整箱型图样式、处理异常值、水平箱型图绘制,以及如何结合Matplotlib和Seaborn等。这些问题应该基于回答内容,帮助用户进一步学习。 需要确保回答中的代码使用正确的语法,比如在Seaborn中使用sns.boxplot,数据加载使用load_dataset,而Matplotlib中使用plt.boxplot。同时,数据格式方面,可能需要说明需要的是数据列表或DataFrame的列。 检查是否所有行内公式,如果有的话,都用了$...$,但这个问题中可能没有数学公式,所以可能不需要。但如果有的话,比如在解释箱型图的统计学参数时,可能需要用,但用户的问题主要是代码实现,可能暂时不需要。 总结步骤应该是:介绍箱型图用途,Seaborn方法(示例代码),Matplotlib方法(示例代码),参数解释,样式调整,然后注意事项和相关问题。</think>### 如何用Python Matplotlib或Seaborn绘制箱型图箱型图(Box Plot)用于展示数据分布的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值)及异常值。以下是两种库的实现方法: --- #### **方法一:使用Seaborn绘制箱型图** Seaborn的`sns.boxplot`函数语法简洁且默认样式美观,适合快速生成箱型图[^2]。 ```python import seaborn as sns import matplotlib.pyplot as plt # 加载示例数据集(如'tips') data = sns.load_dataset('tips') # 绘制箱型图 sns.boxplot( x='day', # 分类变量(横轴) y='total_bill', # 数值变量(纵轴) data=data, # 数据源 palette='coolwarm' # 颜色方案 ) # 添加标题和标签 plt.title('Box Plot of Total Bill by Day') plt.xlabel('Day of Week') plt.ylabel('Total Bill ($)') plt.show() ``` **关键参数说明**: - `hue`:按另一分类变量分组,生成嵌套箱型图。 - `order`:自定义分类顺序。 - `showfliers`:是否显示异常值(默认为`True`)。 --- #### **方法二:使用Matplotlib绘制箱型图** Matplotlib的`plt.boxplot`更灵活,适合自定义需求[^3]。 ```python import matplotlib.pyplot as plt import numpy as np # 生成多组数据(示例) data = [np.random.normal(0, std, 100) for std in range(1, 4)] # 绘制箱型图 plt.boxplot( data, labels=['Group 1', 'Group 2', 'Group 3'], # 分组标签 patch_artist=True, # 填充箱体颜色 boxprops=dict(facecolor='lightblue') # 箱体样式 ) # 添加标题和标签 plt.title('Box Plot by Groups') plt.xlabel('Groups') plt.ylabel('Values') plt.show() ``` **关键参数说明**: - `vert`:控制方向(`False`为水平箱型图)。 - `notch`:显示中位数置信区间缺口。 - `whis`:调整异常值判定范围(默认1.5倍IQR)。 --- #### **注意事项** 1. **数据格式**:Seaborn通常需要长格式数据(DataFrame),而Matplotlib接受列表或数组。 2. **样式优化**:结合Seaborn主题与Matplotlib自定义设置,例如: ```python sns.set_style("darkgrid") # 设置Seaborn主题 plt.rcParams['font.size'] = 12 # 统一字体大小 ``` 3. **异常值处理**:箱型图中超出“须”范围的点会被标记为异常值,需结合业务判断是否剔除。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值