深度学习环境配置(cuda安装,cudnn安装,anaconda安装,虚拟环境创建,国内镜像源添加)

本文详细阐述了在Ubuntu系统下安装NVIDIA驱动、CUDA和CUDNN的步骤,包括查看显卡驱动版本、官网下载驱动、禁用nouveau、安装cuda、验证安装以及cudnn的Windows和Ubuntu安装教程,同时提供了anaconda的配置和虚拟环境管理建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

使用ubuntu做深度学习训练,安装驱动时遇到了很多坑,仅记录防止以后犯错。

一、安装NVIDIA驱动

1.1.查看显卡支持的驱动版本

ubuntu系统下:
打开终端 (ctrl + alt + T)输入:

lshw -numeric -C display

这一步主要确认硬件至此的驱动版本,如果知道显卡型号则可以跳过。

1.2.nvidia官网下载

下面的安装步骤是在ubuntu系统下的安装步骤,如果在windows下,在官网下载驱动后,next就可以了,十分方便,windows,yyds
1.2.1 在ubuntu下安装nvidia驱动可以选择从官网下载。nvidia官方驱动下载链接https://www.nvidia.com/Download/index.aspx
在这里插入图片描述
登录nvidia官网之后,在上图的界面选择对应的选项,点击搜索,下载,会下载一个nvidia-*.run文件。
1.2.2 禁用ubuntu自带的nouveau
在终端输入

sudo gedit /etc/modprobe.d/blacklist.conf 

在文件后面添加

blacklist nouveau
options nouveau modeset=0

重启更新系统修改

sudo update-initramfs -u
sudo reboot

验证nouveau是否禁用

lsmod | grep nouveau

若成功禁用则在终端输入上述命令无任何反应。
1.2.3 开始安装
将下载的nvidia-*.run拷贝至/home文件夹内(这一步方便在安装时找到文件),按ctrl + alt + F1进入命令界面,提示输入密码,输入密码否登录。
然后依次执行如下命令

sudo service lightdm stop      //关闭图形界面
sudo apt-get remove nvidia-*   //卸载系统中存在的驱动
sudo chmod  a+x NVIDIA-*.run    //给文件权限
sudo ./NVIDIA-Linux-x86_64-xxx.run -no-x-check -no-nouveau
### RTX 4060 深度学习环境配置教程 #### 创建 Anaconda 虚拟环境安装 Python 版本 为了确保兼容性和稳定性,在 Windows 11 上使用 RTX 4060 显卡时,建议通过 Anaconda 来管理 Python 环境。可以利用如下命令来创建名为 `pytorch` 的新虚拟环境,并指定所需的 Python 版本: ```bash conda create -n pytorch python=3.9 ``` 此操作会自动处理依赖关系并设置合适的路径[^1]。 #### 配置国内镜像源加速下载速度 考虑到网络因素可能影响软件包获取效率,推荐配置持久性的中国区镜像资源作为默认仓库地址。这一步骤能够显著提升后续组件安装过程中的响应时间与成功率。 #### 安装 Visual Studio Code 编辑器 Visual Studio Code (VSCode) 是一款广受好评的支持多种编程语言的轻量级编辑器。对于从事机器学习项目的研究人员来说,它提供了丰富的插件生态系统,特别是针对 Jupyter Notebook 和 Git 工作流的支持尤为出色。可以从官方网站下载适用于 Windows 平台的应用程序文件进行本地部署[^3]。 #### 设置 NVIDIA CUDA Toolkit 及 cuDNN 库 由于 PyTorch 支持 GPU 加速计算功能,因此需要先完成对 NVIDIA 提供的 CUDA 开发工具集及其配套神经网络推理引擎——cuDNN 的集成工作。具体版本的选择应当依据所使用的 PyTorch 发布版说明文档给出的要求为准。通常情况下,可以通过官方渠道获得最新稳定发行版本,并遵循其提供的指导手册来进行正确无误的操作流程[^2]。 #### 安装 PyTorch 框架实现 GPU 训练模型 当上述准备工作全部就绪之后,就可以着手准备引入核心框架本身了。鉴于当前硬件条件(即搭载 GeForce RTX 4060),应该优先考虑采用预编译好的二进制分发形式而非自行编译的方式。借助于 Conda 渠道可以直接调用一行简单的指令快速完成整个过程: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch-nightly ``` 这条语句不仅包含了必要的库文件还指定了特定版本号以匹配目标图形处理器架构特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值