conda检查tensorflow用GPU还是CPU

本文通过展示如何在TensorFlow中启用GPU并监控其状态变化,证明了GPU的可用性。通过代码实例,我们一步步操作,从nvidiasmi工具的观察开始,再到GPU被成功调用的证明,确保了CUDA和cuDNN版本兼容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

检查GPU运行情况:

nvidia smi

可以看到此时GPU没有被使用

运行代码:

import tensorflow as tf
with tf.device('/gpu:0'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)

 此时再查看

nvidia smi

能够看到

能够看到GPU已经被调用

证明tensorflow可以使用GPU,cuda和cudnn安装版本合适

(运行注意是否默认使用CPU还是GPU,这里只能证明cuda和cudnn版本合适,你的电脑可以调用GPU)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

起当风萧

如果喜欢请支持一下~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值