生活中的泊松分布(为什么你等的公交车总不来)Python模拟的结果图直观展示

本文通过分析深圳湾至天水围的公交线路,探讨了乘客在不同站点的平均候车时间。利用Python模拟展示了泊松过程,揭示了候车时间的分布规律。在始发站,平均候车时间为3分钟;而在天水围站,由于非均匀的到达间隔,平均候车时间是6分钟。这种现象解释了远离总站的站点乘客感受到的候车时间更长,类似于“幸存者偏差”。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深圳湾公交车总站,每6分钟发出一辆开往天水围站的公交车.由于随机因素的干扰,汽车到达天水围站时,两车之间的间隔时间成为独立同分布,服从指数分布的随机变量.设乘客甲等可能地到达车站候车,计算
(1)他在深圳湾站候车时的平均候车时间;
(2)他在天水围站候车时的平均候车时间.
解(1)用T表示甲到达深圳湾站的时间.对于任何长度为6分钟的发车间隔(0,6],已知T∈(0,6]时,T在(0,6]中均匀分布.所以平均候车时间是3分钟.

(2)根据题意,公交车按照强度为λ的泊松过程{N(t)}到达天水围站.由于这路公交车都要经过天水围站,所以平均每6分钟停靠一辆,即有EN(6)=6λ=1.于是λ=1/6.按照剩余寿命的定义,在t时到达的乘客的候车时间为R(t).从R(t)~ε(λ)知道平均候
车时间为ER(t)=6(分钟).下面的示意图表示在深圳湾站的等间隔发车,到达时刻T等可能地落在任何发车间隔内.而公交车在天水围站的到达不再是等间隔的,甲的到达时刻T落在间隔较大的区间内的概率更大.落在[0,30]等待时间的概率几乎为1.因此等待时间的采样区间通常是在较大的区间内取得的,当其等待时间的期望值越大,其等待时间取到一个大于期望值的概率也就越大。
在这里插入图片描述

当我用python对车辆到达天水围站的泊松过程的CDF进行模拟后,更直观地显示了:等待时间的采样区间通常是在较大的区间内取得的,当其等待时间的期望值越大,其等待时间取到一个大于期望值的概率也就越大。因此等待时间大于6分钟的概率是比小于6分钟的概率大的:

from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
 
plt.<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值