深圳湾公交车总站,每6分钟发出一辆开往天水围站的公交车.由于随机因素的干扰,汽车到达天水围站时,两车之间的间隔时间成为独立同分布,服从指数分布的随机变量.设乘客甲等可能地到达车站候车,计算
(1)他在深圳湾站候车时的平均候车时间;
(2)他在天水围站候车时的平均候车时间.
解(1)用T表示甲到达深圳湾站的时间.对于任何长度为6分钟的发车间隔(0,6],已知T∈(0,6]时,T在(0,6]中均匀分布.所以平均候车时间是3分钟.
(2)根据题意,公交车按照强度为λ的泊松过程{N(t)}到达天水围站.由于这路公交车都要经过天水围站,所以平均每6分钟停靠一辆,即有EN(6)=6λ=1.于是λ=1/6.按照剩余寿命的定义,在t时到达的乘客的候车时间为R(t).从R(t)~ε(λ)知道平均候
车时间为ER(t)=6(分钟).下面的示意图表示在深圳湾站的等间隔发车,到达时刻T等可能地落在任何发车间隔内.而公交车在天水围站的到达不再是等间隔的,甲的到达时刻T落在间隔较大的区间内的概率更大.落在[0,30]等待时间的概率几乎为1.因此等待时间的采样区间通常是在较大的区间内取得的,当其等待时间的期望值越大,其等待时间取到一个大于期望值的概率也就越大。
当我用python对车辆到达天水围站的泊松过程的CDF进行模拟后,更直观地显示了:等待时间的采样区间通常是在较大的区间内取得的,当其等待时间的期望值越大,其等待时间取到一个大于期望值的概率也就越大。因此等待时间大于6分钟的概率是比小于6分钟的概率大的:
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
plt.<