华为OD机考 2025C卷 - 最长的顺子 (C++ & Python & JAVA & JS & GO)

最长的顺子

华为OD机试真题目录点击查看: 华为OD机试2025C卷真题题库目录|机考题库 + 算法考点详解

华为OD机试2025C卷 100分题型

题目描述

斗地主起源于湖北十堰房县,据说是一位叫吴修全的年轻人根据当地流行的扑克玩法“跑得快”改编的,如今已风靡整个中国,并流行于互联网上。

牌型:单顺,又称顺子,最少5张牌,最多12张牌(3…A)不能有2,也不能有大小王,不计花色。

例如: 3-4-5-6-7-8,7-8-9-10-J-Q,3-4-5-6-7-8-9-10-J-Q-K-A

可用的牌 3<4<5<6<7<8<9<10<J<Q<K<A<2<B(小王)<C(大王),每种牌除大小王外有四种花色

(共有13×4+2张牌)

输入:

  1. 手上有的牌
  2. 已经出过的牌(包括对手出的和自己出的牌)

输出:

  • 对手可能构成的最长的顺子(如果有相同长度的顺子,输出牌面最大的那一个),
  • 如果无法构成顺子,则输出 NO-CHAIN。

输入描述

输入的第一行为

标题SpringBoot构建的人工智能时代个人计算安全防护科普系统研究AI更换标题第1章引言阐述研究背景、意义,分析国内外在个人计算安全防护科普方面的现状,并介绍论文研究方法和创新点。1.1研究背景与意义说明人工智能时代个人计算安全防护的重要性。1.2国内外研究现状概述国内外在个人计算安全防护科普系统的研究进展。1.3研究方法与创新点介绍本文采用的研究方法以及创新之处。第2章相关理论概述SpringBoot框架、人工智能技术及计算安全防护的理论基础。2.1SpringBoot框架简介介绍SpringBoot框架的特点及其在科普系统中的应用。2.2人工智能技术概述阐述人工智能技术的基本原理及其在安全防护中的应用。2.3计算安全防护理论分析个人计算安全防护的基本原理和方法。第3章科普系统设计详细介绍基于SpringBoot的人工智能时代个人计算安全防护科普系统的设计思路和实现过程。3.1系统架构设计阐述科普系统的整体架构设计及各模块功能。3.2科普内容策划与设计分析科普内容的选择、编排和设计原则。3.3交互功能设计介绍科普系统的交互功能,提升用户体验。第4章系统实现与测详述科普系统的实现过程,包括前端开发、后端实现和系统测等环节。4.1前端开发实现介绍前端界面的设计、开发和实现过程。4.2后端功能实现详述后端功能的实现,包括数据处理、安全防护策略等。4.3系统测与优化阐述系统测的方法、过程和结果,以及针对测结果的优化措施。第5章应用效果评估通过实际应用案例,评估科普系统在提升个人计算安全防护意识方面的效果。5.1应用案例选取选择具有代表性的应用案例进行分析。5.2效果评估方法介绍评估科普系统效果的方法和指标。5.3评估结果分析对评估结果进行详细分析,验证科普系统的有效性。第6章结论与展望总结研究成果,指出研究的不足之处,并展望未来的研究方向。6.1研
### 华为OD机考 2025B 数字游戏 Java 编程题 解决方案 在华为OD机考 2025B中,数字游戏相关的编程题目通常涉及算法设计、数据结构应用以及逻辑推理。以下是一个可能的数字游戏问题及其解决方案。 #### 问题描述 假设有一个数字游戏,玩家需要从一个整数数组中选择若干个数字,使得这些数字的和等于目标值 `target`。要求输出所有可能的组合。如果不存在这样的组合,则返回空列表。 **输入:** - 一个整数数组 `nums`。 - 一个整数目标值 `target`。 **输出:** - 所有可能的组合列表,每个组合是一个子数组。 **示例:** ```plaintext 输入: nums = [2, 3, 6, 7], target = 7 输出: [[7], [2, 2, 3]] ``` #### 解决方案 以下是使用回溯法(Backtracking)解决该问题的 Java 实现: ```java import java.util.ArrayList; import java.util.List; public class NumberGame { public static List&lt;List&lt;Integer&gt;&gt; combinationSum(int[] candidates, int target) { List&lt;List&lt;Integer&gt;&gt; result = new ArrayList&lt;&gt;(); if (candidates == null || candidates.length == 0) return result; // 排序以优化剪枝 java.util.Arrays.sort(candidates); backtrack(result, new ArrayList&lt;&gt;(), candidates, target, 0); return result; } private static void backtrack(List&lt;List&lt;Integer&gt;&gt; result, List&lt;Integer&gt; tempList, int[] candidates, int remain, int start) { if (remain &lt; 0) return; // 超过目标值,直接返回 if (remain == 0) { // 找到一个组合 result.add(new ArrayList&lt;&gt;(tempList)); return; } for (int i = start; i &lt; candidates.length; i++) { tempList.add(candidates[i]); backtrack(result, tempList, candidates, remain - candidates[i], i); // 不移动起点,允许重复使用 tempList.remove(tempList.size() - 1); // 回溯 } } public static void main(String[] args) { int[] nums = {2, 3, 6, 7}; int target = 7; List&lt;List&lt;Integer&gt;&gt; result = combinationSum(nums, target); System.out.println(&quot;结果: &quot; + result); } } ``` #### 代码说明 1. **输入排序**:为了优化剪枝操作,首先对输入数组进行排序[^1]。 2. **回溯函数**:通过递归实现回溯,每次尝将当前数字加入临时列表,并递归调用自身以寻找剩余目标值的组合。 3. **剪枝条件**:当剩余目标值小于 0 时,停止进一步递归;当剩余目标值等于 0 时,保存当前组合并返回。 4. **重复使用元素**:允许同一个数字被多次使用,因此递归调用时传入的起点索引不增加。 #### 时间复杂度与空间复杂度 - **时间复杂度**:最坏情况下为 \(O(2^n)\),其中 \(n\) 是数组长度,因为每个数字都有选或不选两种状态。 - **空间复杂度**:取决于递归深度,最坏情况下为 \(O(n)\)[^2]。 #### 测结果 运行上述代码,对于输入 `nums = [2, 3, 6, 7]` 和 `target = 7`,输出结果为: ```plaintext 结果: [[2, 2, 3], [7]] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无限码力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值