ViT:AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE论文阅读笔记

该文提出将Transformer架构应用于图像处理,通过卷积将图片转化为16*16的patch,结合位置编码和额外的clstoken。经过多头注意力的transformerencoder层,捕捉patch间的关系,最后使用clstoken进行分类预测。

   

 - ICLR 2021

 -本文主要工作:将Transformer运用在视觉领域上

 - 网络结构

         输入为一张大小为224*224的图片,将图片分成14*14个大小为16*16的patch。对每个patch进行embedding操作,使其成为一个向量。同时加入位置编码和额外的名为cls的token,用以输出分类结果

METHOD:

 -token embedding

          利用卷积操作将224*224的图片分割成14*14个大小为16*16的patch。具体操作为 利用num_dim个窗口大小为16*16,步长也为16的卷积核进行卷积,得到14*14*num_dim的特征图,而后进行reshape操作成196*num_dim的向量。再加入位置编码positional encoding 和 额外的token cls。一共组成197个维度为num_dim向量。

-transformer encoder

        将197*num_dim 的向量输入N个到transformer的encoder层中。首先通过layer normalization进行层归一化,有助于网络收敛。再通过多头注意力机制捕获不同patch之间的关系,这个过程中,token cls会收集其他token的信息。

-classify

        得到token cls之后,通过一个全连接层输出分类结果。

论文《An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale》由谷歌团队发表于ICLR 2021,主要介绍了Vision Transformer (ViT) 的设计与性能。以下是关于该论文的一些重要引用: ### 关键概念概述 - **图像分割为Patch序列**:为了使Transformer能够处理图像数据,论文提出将图像划分为固定大小的块(patches)。这些块被线性映射为向量,并附加位置编码以保留空间信息[^2]。 - **减少归纳偏差**:相比于传统卷积神经网络(CNN),ViT通过直接处理图像patch序列的方式显著减少了图像特定的归纳偏差。这意味着模型更加灵活,能够在不同类型的图像任务中表现出更强的泛化能力[^3]。 - **预训练的重要性**:研究发现,在大规模数据集上进行预训练对于提升ViT的表现至关重要。即使是在较小的数据集上微调时,经过充分预训练的ViT也能达到甚至超过现有最佳卷积网络的效果[^4]。 - **计算效率高**:尽管Transformer架构通常被认为计算成本较高,但实验表明,当应用于适当规模的任务时,ViT所需的计算资源实际上低于许多先进的CNN模型。 ### 技术细节说明 下面是一段简单的Python代码实现如何将一张图片转换成适合输入给ViT模型的形式: ```python import numpy as np def split_image_into_patches(image, patch_size=16): height, width, channels = image.shape patches = [] for y in range(0, height, patch_size): for x in range(0, width, patch_size): patch = image[y:y+patch_size, x:x+patch_size] if patch.shape[:2] == (patch_size, patch_size): # Ensure full-sized patches only. patches.append(patch.flatten()) return np.array(patches) # Example usage with a dummy RGB image of size 224x224 pixels and 3 color channels. dummy_image = np.random.rand(224, 224, 3) image_patches = split_image_into_patches(dummy_image) print(f"Number of Patches Generated: {len(image_patches)}") ``` 此函数会把任意尺寸的RGB图像切割成一系列形状相同的补丁,准备作为后续嵌入层的输入源材料之一。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值