本文是发表于CVPR 2023上的一篇论文:[2212.04488] Multi-Concept Customization of Text-to-Image Diffusion (arxiv.org)
一、引言
本文主要做的工作是对stable-diffusion的预训练模型进行微调,需要的显存相对较多,论文中测试时是在两块GPU上微调,需要30GB的显存,不过他调的batchsize=8,因为我自己的算力有限,我把复现的时候把batchsize调成了2,然后在两块3090上跑的,至于最低要求多少还没测试,不过个人认为最低也要有一张3090。
在复现前,请自行安装好Python的环境,本文就不叙述了哈哈。
二、下载相关文件及搭建环境
1.下载项目及环境搭建
上述链接是本文代码的链接,这篇文章的代码实际上是基于Stable-diffusion构建的,所以我的建议是可以先去复现一下stable-diffusion的代码,再来学习这篇文章以及代码。stable-diffusion的复现可以看我另外一篇文章:stable-diffusion复现笔记,当然如果你想直接上手,可以按照项目中readme来构建,这里我默认已经有装过stable-diffusion了哈,因为很多文件都是相同的,如果你是直接上手,有些文件比如sd-v1-4.ckpt的下载等问题,都可以去看我这篇stable-diffusion复现笔记。
git clone https://github.com/adobe-research/custom-diffusion.git
cd custom-diffusion
git clone https://github.com/CompVis/stable-diffusion.git
cd stable-diffusion
conda env create -f environment.yaml
conda activate ldm
pip install clip-retrieval tqdm
上述是论文给出的环境搭建代码,如果你跟我一样已经做过s