code:https://github.com/afofanah/EATSA-GNN.
文章目录
Abstract
图神经网络(GNNs)从根本上改变了我们处理和分析源于非欧几里得领域的数据的方式。传统的用于处理不平衡节点分类问题的方法,如重采样,效果不佳,因为它们没有考虑到边所蕴含的底层网络结构。目前可用的用于捕捉图边中复杂关系的方法有限,这给图神经网络(GNNs)准确分类节点带来了重大挑战。我们提出了EATSA-GNN模型,利用边缘感知和两阶段注意力机制(EATSA-GNN)来提升GNN的节点分类能力。EATSA-GNN最初将注意力集中在边的特征上,使模型能够区分不同节点间连接的不同重要性,这被称为教师注意力(Teacher-Attention,TA)。在第二步中,注意力转向节点,结合从边层面分析中获得的知识,这被称为学生注意力(Student-Attention,SA)。采用这种双重策略确保了对图结构更深入的理解,从而提高了分类精度。EATSA-GNN模型对GNN领域的贡献在于其能够以协调的方式同时利用节点和边的信息,从而实现更准确的节点分类。这凸显了该模型的本质及其潜力。将EATSA-GNN模型与两种不同变体的最新方法进行比较,可以看出其强大之处以及在处理节点分类复杂问题方面的出色表现。这巩固了其在GNN架构领域及其在复杂网络系统中应用的领先地位。EATSA-GNN的卓越性能不仅展示了其有效性,还强调