0-EATSA-GNN:基于图节点分类师生机制的边缘感知和两阶段注意力增强图神经网络(code)

code:https://github.com/afofanah/EATSA-GNN.

Abstract

图神经网络(GNNs)从根本上改变了我们处理和分析源于非欧几里得领域的数据的方式。传统的用于处理不平衡节点分类问题的方法,如重采样,效果不佳,因为它们没有考虑到边所蕴含的底层网络结构。目前可用的用于捕捉图边中复杂关系的方法有限,这给图神经网络(GNNs)准确分类节点带来了重大挑战。我们提出了EATSA-GNN模型,利用边缘感知和两阶段注意力机制(EATSA-GNN)来提升GNN的节点分类能力。EATSA-GNN最初将注意力集中在边的特征上,使模型能够区分不同节点间连接的不同重要性,这被称为教师注意力(Teacher-Attention,TA)。在第二步中,注意力转向节点,结合从边层面分析中获得的知识,这被称为学生注意力(Student-Attention,SA)。采用这种双重策略确保了对图结构更深入的理解,从而提高了分类精度。EATSA-GNN模型对GNN领域的贡献在于其能够以协调的方式同时利用节点和边的信息,从而实现更准确的节点分类。这凸显了该模型的本质及其潜力。将EATSA-GNN模型与两种不同变体的最新方法进行比较,可以看出其强大之处以及在处理节点分类复杂问题方面的出色表现。这巩固了其在GNN架构领域及其在复杂网络系统中应用的领先地位。EATSA-GNN的卓越性能不仅展示了其有效性,还强调

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值