题目:
一个无环连通图可以被视作一个树。
树的高度取决于所选取的根节点。
现在,你要找到可以使得树的高度最大的根节点。
它被称为最深的根。
输入格式
第一行包含整数 N,表示节点数量。
节点编号为 1∼N。
接下来 N−1 行,每行包含两个整数,表示两个节点之间存在一条边。
输出格式
输出最深的根的节点编号。
如果最深的根不唯一,则按照从小到大的顺序,将它们依次输出,每个占一行。
如果给定的图不是树,输出 Error: K components,其中 K 是图中连通分量的数量。
数据范围
1≤N≤104
输入样例1:
5
1 2
1 3
1 4
2 5
输出样例1:
3
4
5
输入样例2:
5
1 3
1 4
2 5
3 4
输出样例2:
Error: 2 components
题意
给出n个结点(1~n)之间的n条边,问是否能构成⼀一棵树,如果不不能构成则输出它有的连
通分量量个数,如果能构成⼀一棵树,输出能构成最深的树的⾼高度时,树的根结点。如果有多个,按照从
⼩小到⼤大输出。
算法:
dfs+并查集+邻接表建图:
首先,用邻接表存储这个无向图,vevtorv[N],用并查集判断这个图是否是一棵树(一个无环连通图可以被视作一个树),之后用dfs返回每个结点作为根节点时的最大深度。
注意点:再用dfs遍历这棵树时,加一个判断 if(father == v[root][i]) { continue;},判断此节点是否走过,否则会陷入死循环
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e4 + 10;
const int INF = 0x3f3f3f3f;
vector<int>v[110]; //邻接表存储图
unordered_map<int, int>mp; //判断是否为树
int depth, f[N]; //树的深度
set<int>s; //存储最深根的结点编号
int n;
void dfs(int root, int deep,int father) {
int flag = 0;
for(int i = 0; i < v[root].size(); i++) {
if(father == v[root][i]) {
continue;}
//cout << v[root][i] << endl;
dfs(v[root][i], deep + 1,root);
flag =1;
}
if(!flag){
depth =max(depth,deep);
}
}
void init() {
for(int i = 0; i < N; i++) {
f[i] = i;
}
}
int Find(int x) {
if(x != f[x])
f[x] = Find(f[x]);
return f[x];
}
int main() {
init();
scanf("%d", &n);
for(int i = 1; i <= n-1; i++) {
int a, b;
scanf("%d%d", &a, &b);
v[a].push_back(b);
v[b].push_back(a);
int x = Find(a), y = Find(b);
if(x != y)
f[x] = y;
}
//dfs(1,0,-1);
int co = 0;
for(int i = 1; i <= n; i++) {
if(f[i] == i)
co++;
}
if(co > 1) {
printf("Error: %d components", co);
return 0;
}
int d = -1;
for(int i = 1; i <= n; i++) {
mp.erase(mp.begin(), mp.end());
depth = 0;
dfs(i, 0,-1);
// cout << i << " " << depth << endl;
if(d < depth) {
d = depth;
s.clear();
s.insert(i);
} else if(d == depth) {
s.insert(i);
}
}
for(auto&it:s){
cout << it << endl;
}
return 0;
}