• 博客(106)
  • 收藏
  • 关注

原创 从OLS到固定效应:实证检验企业融合水平对价值的影响

本文基于88家企业的面板数据,采用固定效应模型分析了数实融合对企业价值的影响。研究发现: 控制个体效应后,数实融合程度对企业价值具有显著正向影响(p=0.001); Hausman检验(chi²=73.32)支持固定效应模型更稳健; 边际效应图显示数实融合与企业价值呈稳定线性关系; 企业年龄是另一个显著影响因素,而托宾Q值、成长性等变量在控制个体效应后不显著。 研究为数字化转型的价值创造提供了实证依据,建议企业重视数实融合的战略优化。

2025-06-23 22:31:29 597

原创 什么是缺口箱线图?如何绘制?

摘要:箱线图是一种展示数据分布特征的统计图表,通过箱体和须线呈现中位数、四分位数及异常值。缺口箱线图作为改进版,在中位数位置增加缺口,若两组缺口不重叠则表明中位数差异显著。文章介绍了箱线图的优势及其在科研中的应用,并通过R语言代码演示了如何绘制透明背景和常规箱线图。该可视化工具能直观比较数据集分布,适用于数据分析、质量控制等领域。

2025-06-22 17:36:14 508

原创 基于迁移学习实现肺炎X光片诊断分类

基于迁移学习的肺炎X光片诊断分类研究,不仅可以缓解医生在实际工作中因繁重工作负担导致的诊断错误问题,还能够通过高效、准确的自动化诊断方法,在早期筛查中提供帮助,尤其是在偏远地区或医疗资源匮乏的环境中,为患者提供及时的诊疗建议,极大地促进了医疗资源的合理分配。

2025-04-16 17:28:48 351

原创 基于深度学习的MRI分割提取LGG的多维度形状特征

本研究以深度学习为基础,构建自动分割模型对LGG的MRI图像进行精准分割,在此基础上提取肿瘤的多维度形状特征,并探索这些特征与分子亚型之间的关联性。通过建立影像特征到基因组特征的映射关系,旨在实现低成本、无创伤的分子分型预测,不仅有助于提高影像在临床中的决策支持能力,也推动了医学影像智能分析向多模态融合、精准识别的方向迈进。

2025-04-16 12:12:38 1115

原创 深度学习ResNet模型提取影响特征

在众多CNN架构中,ResNet(残差网络)因其独特的残差连接机制,有效缓解了网络加深带来的梯度消失问题,能够训练更深层次的模型,从而捕捉更复杂、抽象的影像特征。相比浅层网络或传统方法,ResNet能自动从原始图像中学习出更具区分性的表征,提升分类和预测性能。在影像组学应用中,ResNet不仅可以代替手工特征提取过程,还能与传统特征融合,实现更高层次的特征整合,增强模型的泛化能力。因此,将ResNet应用于影像组学特征提取,不仅符合当前智能医疗发展的趋势,也为精准医学提供了强有力的技术支撑。

2025-04-13 22:59:45 630

原创 使用治疗前MR图像预测脑膜瘤Ki-67的多模态深度学习模型

该文章利用多模态技术,开发了一个通过MRI数据准确评估脑膜瘤Ki-67指数的深度学习模型。凭借该研究多模态融合的启发,本文对如何解释不同模态信息融合进行了更进一步的分析。

2025-04-11 20:38:57 849

原创 基于因果特征选择进行癌症关键预后基因识别的新方法CPCG

如何将深度学习与因果推理有效结合,实现多模态高维数据的因果建模,也是当前研究热点之一。未来,随着因果推理理论的进一步发展及其与临床实践的深入结合,其在疾病预测、早筛机制、治疗优化等方面的应用将日趋广泛,成为推动医学智能化的重要引擎。

2025-04-11 16:22:34 778

原创 python绘图配色

2025-04-01 10:18:46 91

原创 多方法实现影像组学特征降维与选择

多方法实现影像组学特征降维与选择

2025-02-07 22:14:23 604

原创 基于三种机器学习方法的磁芯损耗预测模型

​汇总所有特征变量,并对磁芯材料类型、励磁波形数据等分类变量采用独立热编码将文本转化为数值。分别构建BP神经网络、随机森林回归、轻量梯度提升三种磁芯损耗预测模型,并对比各个模型在验证集上的MSE、MSE、MAE和,选择最优的模型对测试集进行预测。研究结果表明,轻量梯度提升模型的预测效果最好。此外为了探究模型的泛化能力,采用k-折交叉验证方法,对模型进行评估。最后,根据模型评估结果给出了相应建议。​

2024-12-28 17:31:17 1247

原创 多种机器学习模型预测房价全流程建模

本期是房价预测,它是一个连续型的变量,因此它是一个回归问题。所以这是一篇回归问题的全流程的代码。从数据清洗到特征工程到分析可视化,再到模型选择,模型训练,交叉验证,超参数搜索,有效性评估。

2024-12-19 17:31:17 1222

原创 股民情绪识别的LSTM-NBM混合模型

利用之前爬取2023年10月17日至2024年7月13日的65万余条东方财富网的上证指数股吧的股民评论数据,基于jieba库对股民情绪进行识别,在进行中文分词、去除停用词、合并同义词和长短句分离后,对长文本使用长短期记忆网络(LSTM)情绪分类,对短文本使用朴素贝叶斯(NBM)情绪分类,建立了股民情绪识别的LSTM-NBM混合模型。混合模型的正向文本和负向文本的识别准确率分别为77%、88%。

2024-11-09 00:18:23 983

原创 C语言中实现一个包含开卡、查询内容、存钱、取钱、转账和修改密码的银行服务系统

本次在C语言中实现一个包含开卡、查询内容、存钱、取钱、转账和修改密码的银行服务系统,下面开始代码实战。

2024-10-29 17:53:13 795

原创 Java语言基础实验报告

Java语言基础实验报告

2024-10-29 16:55:54 1075

原创 基于泊松洞过程建模的异构蜂窝网络信干比增益与近似覆盖率分析

移动通信业务的高速增长使得传统同构蜂窝网络结构不能满足用户对通信质量的要求,而异构网络架构可以有效解决这种问题。文中对泊松洞过程下异构蜂窝网络的覆盖率进行研究。首先,利用泊松洞过程( Poisson Hole Process,PHP) 对异构蜂窝网络进行建模; 然后以信干比( Signal to Interference Radio,SIR) 分布为研究目标,利用泊松点过程的近似SIR 分析方法,推导出PHP 模型下网络SIR 增益的具体表达式; 最后,通过缩放泊松网络的信干比门限得到PHP 模型下的

2024-10-23 18:37:27 460

原创 基于信号分解和多种深度学习结合的上证指数预测模型

建立了基于上证指数的VMD-LSTM-BiGRU-Attention预测模型,该模型的拟合优度达到了0.98,而均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)也明显优于本文用于比较的其他模型,说明本文模型可为上证指数提供更加精准的预测。不仅如此,在相同VMD-LSTM-BiGRU-Attention模型的条件下,加入情绪指数与上证指数结合进行预测,比单独使用上证指数进行预测的准确率更高。这很好的体现了本文研究股民情绪指数和上证指数之间的关联性是有实际意义的,实现了基于股民情绪

2024-10-23 17:50:51 1783 1

原创 文本情绪指数与上证指数的VAR模型构建

文本情绪指数与上证指数的VAR模型构建

2024-06-28 16:23:54 1014 2

原创 利用python爬取上证指数股吧评论并保存到mongodb数据库

主要解决爬取上证指数股吧评论问题,后续可能会对评论进行数据处理和情感分析。

2024-06-28 14:34:20 1121 1

原创 自适应蚁群算法优化的攀爬机器人的路径规划

本项目旨在基于自适应蚁群算法优化,探索解决攀爬机器人路径规划问题的新方法。通过利用自适应蚁群算法的全局搜索能力和路径优化特性,来提高全局路径规划的效率和质量,为攀爬机器人的实际应用提供有效的路径规划解决方案。

2024-06-28 13:04:35 1051

原创 Python+MongoDB的文档管理系统

文档管理系统(Python+MongoDB)为用户提供了高度的定制性和灵活性,使其成为一个非常有吸引力的选择。这种组合允许开发者创建一个完全根据他们的特定需求、工作流程和数据管理要求量身定制的解决方案。通过使用Python,开发者可以利用其简洁的语法和强大的库生态系统快速开发应用程序,而MongoDB的非关系型数据模型则提供了存储灵活性和高性能的读写操作,这对于处理大量的文档和元数据尤其重要,并且MongoDB是免费。

2024-04-11 17:41:45 852

原创 python绘制子图(旭日图、渐变堆积面积图、多数据折线图、比例关系图)

子图可以更清晰地展示和理解复杂的数据关系,通过将数据分成多个小图,有助于观察数据间的关系和趋势。减少数据之间的重叠和混淆,使得每个子图更易于理解和解释。不同类型的子图可以呈现数据的不同方面。例如,旭日图可以展示层次数据的结构,渐变堆积面积图可以显示时间序列数据的变化,多数据折线图可以比较多个数据集的趋势,比例关系图可以展示数据之间的相对比例关系。下面开始代码实战。

2024-04-06 11:42:31 809

原创 Python实现特征模态分解(FMD)

特征模态分解(Feature Mode Decomposition,FMD)是一种信号处理技术,用于从数据中提取特征,并将其表示为一组特定的模态成分。与其他分解方法类似,如小波变换或奇异值分解,FMD 旨在将信号分解为具有不同频率和振幅的模态成分,每个模态成分代表信号中的一个特定特征或组件。FMD 可以应用于多个领域,包括信号处理、图像处理、振动分析和数据压缩等。它通常用于处理非线性和非平稳信号,并且在提取信号中的重要特征方面具有一定的优势。 FMD 的目标是将原始信号分解为一组具有良好时频局部性质的基本模

2024-04-06 11:19:16 4876 16

原创 Matlab实现序贯变分模态分解(SVMD)

逐次变分模态分解是一种有效的信号处理和数据分析方法。它可以将复杂信号分解为多个模态函数,并可以通过数据重构将它们重新组合成原始信号。 SVMD有着广泛的应用范围,对于理解和描述信号的频率特性非常有帮助。

2024-03-25 17:49:15 2065 6

原创 基于word2vec+LSTM模型实现百度贴吧恶意评论预测

基于word2vec+LSTM模型实现百度贴吧恶意评论预测

2024-03-25 15:14:26 1301

原创 使用逻辑回归绘制混淆矩阵、ROC曲线、特征变量重要性排序图

逻辑回归是一种用于解决分类问题的统计学习方法,它常被用于二分类问题,即将数据分为两个类别。逻辑回归的目标是根据输入的特征来预测输出为某个类别的概率。逻辑回归模型在简单性、可解释性、稳定性和性能评估等方面具有优势,并且可以通过绘制混淆矩阵、ROC曲线和特征变量重要性排序图来进一步评估和优化模型。下面开始代码实战。

2024-03-18 21:21:38 1143

原创 使用决策树模型绘制混淆矩阵、ROC曲线、特征变量重要性排序图

决策树模型可以处理各种类型的特征(连续型、离散型、类别型等),不需要对特征进行过多的预处理工作,因此非常适合初步探索数据。通过绘制混淆矩阵、ROC曲线和特征变量重要性排序图,可以直观地了解模型的性能表现以及对于预测的重要特征,有助于进一步分析和改进模型。下面开始代码实战。

2024-03-18 21:01:22 2309 2

原创 基于逻辑回归与决策树的地质灾害预测

将逻辑回归与决策树结合在地质灾害预测中,可以综合利用它们各自的优势,提高预测的准确性和可解释性。例如,可以先使用逻辑回归分析地质因素的影响,然后利用决策树根据这些因素建立预测模型,并生成可解释的规则和决策路径,从而为地质灾害的预防和应对提供科学依据和决策支持。下面开始代码实战。

2024-03-14 17:01:54 1099 3

原创 基于粒子群优化的支持向量机房价预测分析

在本期中,首先介绍如何爬取房价数据与清洗数据,对处理后的数据进行简单分析,最后使用粒子群优化的支持向量机对房价进行预测。

2024-03-14 11:12:02 1310

原创 R实现热图与网络图组合并显示显著性

热图和网络图分别展示了数据的不同方面。热图可用于显示变量之间的相关性或模式,而网络图则可用于显示节点之间的连接关系。通过将它们组合在一起,可以更全面地展示数据之间的关系和结构。下面开始代码实战。

2024-03-07 16:32:00 1607

原创 R语言实现分位数回归和二次分位数回归

分位数回归和二次分位数回归是统计学中用于分析因变量与自变量之间关系的方法,特别适用于处理非线性和异方差的情况。在以往的学习中,大家最常用的是分位数回归,也比较容易找到分位数回归的相关R代码,但是在后续的学习中,我发现网上关于二次分位数回归的代码与学习内容比较少,代码难以获取,为了解决这个问题,就有了这一篇博客的由来。

2024-02-22 14:54:36 2163

原创 爬取电影票房数据并进行数据分析

爬取影院名称,当周票房、单荧幕票房、场均人次、单日单厅票房、单日单厅场次6个变量并进行数据分析。

2024-01-02 20:05:36 1115

原创 爬取豆瓣电影评论内容、星级、评论时间、支持人数

​本期爬取豆瓣电影评论人、评论时间、星级、支持人数、评论内容,电影网站链接为https://movie.douban.com/subject。​

2024-01-01 17:48:28 1828 1

原创 对房价数据集进行处理和数据分析

实现对房价数据进行可视化和统计分析:如绘制直方图、密度图、箱线图以及查看各个散点图的分布,最后使用支持向量机和KNN等几种机器学习方法进行学习。

2024-01-01 17:31:07 2752 3

原创 动态神经网络时间序列预测

本期将动态网络应用于时间序列的预测中,实现通过 NARX 动态神经网络对时问序列数据的建模仿真及效果评价。

2023-11-21 19:50:25 1212

原创 使用遗传算法优化的BP神经网络实现自变量降维

本次利用遗传算法筛选出最具有代表的自变量,再利用BP神经网络进行预测。

2023-11-21 13:14:20 706

原创 中国电影票房排行数据爬取及分析可视化

对中国电影票房排行数据的爬取和分析可视化具有多方面的用处:例如了解电影市场的历史趋势,包括不同类型电影的受欢迎程度、票房的季节性波动。识别观众对于不同类型电影的偏好,为电影制片方提供指导,以选择更有市场潜力的题材和类型。本期使用python爬取中国电影票房排行数据,并进行数据分析。

2023-11-19 17:03:35 3180 1

原创 基于灰色神经网络的预测算法——订单需求预测

灰色系统理论的不确定性处理与神经网络的非线性建模相结合,有望更好地处理实际问题中的不确定性和复杂性。本期使用灰色神经网络实现预测冰箱订单需求。

2023-11-19 15:51:33 2273 1

原创 小波神经网络的时间序列预测——短时交通流量预测

利用小波神经网络实现短时交通流量预测。

2023-11-15 11:43:39 2260

原创 自组织竞争网络在模式分类中的应用——患者癌症发病预测

自组织神经网络可以通过对客观事件的反复观察、分析与比较,自行提示内在规律,并对具有共同特征的事物进行正确的分类。该网络更与人脑中生物神经网络的学习模式类似,即可以通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变神经网络参数结构。自组织神经网络的学习规则大都采用竞争型的学习规则。

2023-11-14 21:51:43 287

原创 基于连续Hopfield神经网络优化——旅行商问题优化计算

由于连续型Hopfield神经网络具有优化计算的特性,因此将TSP问题的目标函数(即最短路径)与网络的能量函数相对应,将经过的城市顺序与网络的神经元状态相对应。这样,由连续型Hopfield神经网络的稳定性定理知,当网络的能量函数趋于最小值时,网络的神经元状态也趋于平衡点,此时对应的城市顺序即为最佳的路线。

2023-11-13 21:50:55 1608

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除