题目
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
**说明:**你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
- n == height.length
- 2 <= n <= 105
- 0 <= height[i] <= 104
思路
算法:
双指针算法 O(n)
为了找到两条直线,使其所围成面积最大,我们可以通过两层暴力循环枚举,找出所有可能的直线的组合,计算其面积,并找到最大值,时间复杂度为O(n2).
暴力解法中,每固定一条直线,就要遍历剩下的所有直线,造成了大量元素的多次重复访问。那么我们有没有办法只扫描一次数组,就可以找到最大的面积呢?让我们来看看双指针算法是怎么做的。
最开始的时候,如果我们用指针 i
和 j
指向最两端的直线,此时两条直线之间的距离就是最大的,即我们所求矩形面积的宽度 (width)
为最大。
但是位于最两端的直线不一定是最高的,所以它们组成矩形的面积也就不一定是最大的。因此我们依然需要继续遍历整个数组,这时我们将指向数组两端的指针慢慢往里面收敛,直到找到面积最大值。
对于此时 i
和 j
指向的直线,他们之间的宽度已经是最宽了。于是在收敛的过程中,如果遇到的高度比两端的柱子更低的话,由于之间的宽度更短,所以面积必定更小,我们就可以直接跳过,不予考虑。我们只需要考虑收敛时出现的那些高度更高的柱子。
时间复杂度:在双指针向中间收敛的过程中,对数组中的每个元素只访