STM32部署神经网络-pytorch

训练模型

在STM32微控制器上部署神经网络时,模型大小是一个重要的考虑因素,因为微控制器的存储和计算资源有限。以下是一些减小模型大小和优化模型以适应STM32微控制器的策略:

  1. 模型架构选择
    选择轻量级的神经网络架构,如MobileNet、SqueezeNet或Tiny YOLO,这些架构专为资源受限的设备设计。

本次选择轻量级网络MobleNetV1,MobileNet 是一个为移动和嵌入式视觉应用设计的卷积神经网络(CNN)架构。它由 Google 开发,旨在在保持高准确率的同时减少计算资源的消耗。MobileNet 特别适合在计算能力有限的设备上运行,比如智能手机和嵌入式系统。

修建模型

  1. 参数剪枝
    在训练过程中或训练后,剪除不重要的权重或神经元,减少模型的参数数量。
    非结构化剪枝:通过正则化技术(如L1正则化)或后训练剪枝策略来实现。
    结构化剪枝:通过分析模型的通道或层的重要性,并移除不重要的部分来实现。
    增量剪枝:逐步增加剪枝比例,逐步优化模型。
    动态剪枝:在模型推理时动态地移除或保留网络的部分。参考的文章:
    http://t.csdnimg.cn/AdPYh
    http://t.csdnimg.cn/yhkSa
    本文选用结构化剪枝,因为它可以显著减少计算量和内存占用。(非结构化剪枝产生的稀疏性可能需要特殊的硬件支持(如支持稀疏矩阵运算的GPU)来充分利用其优势。)
import torch.nn.utils.prune as prune

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 训练模型
# 设置超参数
learning_rate = 0.01
num_epochs = 2
best_acc = 0
model = MobileNetV1(num_classes = 3)
# Define the pruning parameters
pruning_rate = 0.5  # Percentage of weights to prune

# Specify the pruning method (e.g., L1Unstructured, RandomUnstructured, etc.)
pruning_method = prune.L1Unstructured

# Create a pruning instance for each layer you want to prune
pruning_instances = [
#     (model.conv_dw1[0], "weight", pruning_method, pruning_rate),
    (model.conv_dw2[0], "weight", pruning_method, pruning_rate),
    # Add other layers to prune
    (model.conv_dw3[0], "weight", pruning_method, pruning_rate),
    (model.conv_dw4[0], "weight", pruning_method, pruning_rate),
    (model.conv_dw5[0], "weight", pruning_method, pruning_rate),
#     (model.conv_dw6[0], "weight", pruning_method, pruning_rate),
#     (model.conv_d
### 如何在STM32微控制器上部署和运行神经网络模型 #### 选择合适的硬件平台 STM32是一款由ST公司推出的32位微控制器系列,它具有强大的处理能力和丰富的外设,非常适合用于嵌入式系统和物联网设备的开发[^1]。为了成功部署神经网络,在选择具体的STM32型号时应考虑到所需的性能指标如运算速度、功耗特性以及接口种类等因素。 #### 准备工作环境 对于希望在其应用程序中集成机器学习功能的人来说,准备适当的工作流程至关重要。这通常涉及安装必要的软件工具链和支持库来编译并下载程序至目标板卡;同时也需配置好IDE(例如Keil MDK或STM32CubeIDE),以便编写高效的C/C++代码来进行后续操作。 #### 设计与训练模型 当涉及到具体应用领域内的任务需求分析之后,则要着手于构建适合该场景使用的深度学习框架下的算法结构——即所谓的“前向传播”。此时可借助Python中的PyTorch或其他流行框架完成初步的设计,并利用大型数据中心所提供的强大算力加速迭代过程直至获得满意的精度表现为止[^3]。 #### 转换及量化模型 由于大多数高级别的DL API并不直接支持裸机环境下执行预测逻辑,因此有必要通过特定转换器将已训练好的浮点数版本转化为整数量化后的紧凑形式以减少所需占用的空间开销。此外还需注意保持原有特征表达能力不变的前提下尽可能简化内部连接关系从而提高推理效率。 #### 部署STM32 一旦完成了上述准备工作,就可以把经过优化调整过的参数文件加载进Flash存储区内供随时调用了。实际编程阶段主要围绕着初始化各个模块状态、设置中断服务例程等方面展开讨论。值得注意的是如果想要进一步提升整体吞吐率的话不妨尝试引入DMA传输机制来减轻CPU负担[^4]。 #### 实现案例展示 以人体活动检测为例说明整个流程:采用MPU6050六轴加速度传感器作为输入源获取当前姿态变化情况并通过SPI/IIC总线传递给主控单元解析成可用于下一步分类依据的数据集;接着调用预先烧录进去的小型CNN层逐帧扫描窗口内连续采样得到的结果序列最终输出对应的动作类别标签。 ```cpp // 示例代码片段:读取IMU数据并送入NN做推断 void process_imu_data(float *input_buffer){ // ...省略部分预处理步骤... // 执行一次向前传播计算得出概率分布向量 float output[OUTPUT_SIZE]; nn_inference(input_buffer, output); // 获取最大分值对应的索引位置代表最有可能发生的动作类型 int predicted_class = argmax(output); // 输出结果 printf("Detected activity: %d\n",predicted_class ); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值