NLP_文本去重_附Python实现【MinHash和MinHashLSH】算法

本文介绍了大规模文本去重的方法,重点讲解了利用MinHash和MinHashLSH算法进行文本相似度计算。通过Python实现,详细注释辅助理解,包括读取文本、计算Jaccard相似度和基数,以及三种不同的去重策略:随机算法、簇算法和最小标号算法。最后,将去重结果写入文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP_文本去重_附Python实现【MinHash和MinHashLSH】算法

前言

大规模的文本去重是目前比较热门的一个技术,由于大模型的兴起,更多的高质量数据集也是大家迫切需要的。

关于如何进行文本去重?

直观的方法首先是利用Python正则表达式进行去重。
推荐学习:1. re — 正则表达式操作 2. 正则表达式 - 教程

然后是利用文本之间的相似度进行去重。
这里主要讲第二种。
推荐学习:1. 张振虎大佬的博客 2. Github的实现源码 3. 文本内容相似度计算方法:minhash

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值