YOLOv8v10改进 | 注意力改进篇 | YOLOv10引入MLLA曼巴式线性注意力(助力于图像分类、高分辨率任务)

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、本文介绍

MLLA模块网络结构图

MLLA(曼巴式线性注意力)模型的结构和原理

三、手把手教你添加MLLA和C2f_MLLA模块和修改task.py文件

1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件

2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用 

3.修改task.py文件

四、创建涨点yaml配置文件

参考版本1 : yolov10n_MLLA.yaml

         参考版本1 :正常运行  

参考版本2 : yolov10n_C2f_MLLA.yaml

        参考版本2 :正常运行 

五、本文总结


一、本文介绍

摘要:Mamba 是一种具有线性计算复杂性的有效状态空间模型。它最近在处理各种视觉任务中的高分辨率输入方面表现出令人印象深刻的效率。在本文中,我们揭示了强大的 Mamba 模型与线性注意力 Transformer 有着惊人的相似之处,后者在实践中通常表现不佳于传统的 Transformer。通过探索有效的 Mamba 和低于标准的线性注意力 Transformer 之间的相似之处和差异,我们提供了全面的分析,以揭开 Mamba 成功背后的关键因素的

非常感谢您的提醒。让我重新审视文档,以确保我们严格按照文档的描述来实现模块。如果文档中没有明确提到多头注意力机制,我们应该依据文档的实际描述来调整代码。 ### 重新审视文档描述 根据文档中的描述,特别是 **C 部分**,MHMambaOut 模块的主要功能是结合多头混合操作(可能是多头卷积或其他操作)和曼巴操作,而不是明确提到的多头注意力机制。让我们更仔细地检查文档的具体描述,并据此调整代码。 #### C. MHMambaOut(多头混合曼巴输出模块) 文档中提到: > 为了进一步提升高光谱图像分类和特征提取的性能,我们设计了多头混合曼巴输出模块(MHMambaOut)。该模块结合了多头混合操作和曼巴(Mamba)操作,旨在增强特征表示的多样性和鲁棒性。 具体描述: 1. **多头混合操作**:文档中并未明确说明是多头注意力机制,而是提到多头混合操作。这可能是多头卷积或其他类型的混合操作。 2. **曼巴操作**:包括局部特征增强和全局特征增强,以及特征融合。 ### 代码调整 基于文档描述,我们将调整 `MHCNNBlock` 和 `MHMambaOut`,使其更符合文档中的描述,而不引入多头注意力机制。 #### 1. `MHCNNBlock` 模块 根据文档描述,这里主要是结合卷积操作和其他混合操作(如多头卷积),而不是多头注意力机制。我们可以保留卷积和激活函数,但不需要添加复杂的多头注意力机制。 ```python class MHCNNBlock(nn.Module): """ 多头混合卷积神经网络模块(MHCNN),结合卷积操作进行特征提取 """ def __init__(self, in_channels, out_channels): super(MHCNNBlock, self).__init__() self.norm = nn.LayerNorm(in_channels) # 层归一化 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) # 1x1 卷积层 self.gelu = nn.GELU() # GELU 激活函数 def forward(self, x): x_norm = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) # 层归一化 x_conv = self.conv(x_norm) # 1x1 卷积 x_gelu = self.gelu(x_conv) # GELU 激活 return x + x_gelu # 残差连接,返回输入与卷积输出的和 ``` #### 2. `MHMambaOut` 模块 根据文档描述,MHMambaOut 模块应结合多头混合操作和曼巴操作。我们将实现曼巴操作,并确保多头混合操作符合文档的描述。 ```python class MHMambaOut(nn.Module): """ 多头混合曼巴输出模块(MHMambaOut),结合多头混合操作和曼巴操作进行全局特征提取 """ def __init__(self, in_channels, out_channels, num_mixed_heads=3): super(MHMambaOut, self).__init__() self.mixed_heads = nn.ModuleList([ MHCNNBlock(in_channels, out_channels) for _ in range(num_mixed_heads) ]) # 堆叠多个 MHCNNBlock 作为多头混合操作 # 曼巴操作 self.local_conv = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) # 局部卷积层 self.global_pool = nn.AdaptiveAvgPool2d(1) # 全局平均池化层 self.global_conv = nn.Conv2d(out_channels, out_channels, kernel_size=1) # 全局卷积层 self.fusion_conv = nn.Conv2d(out_channels, out_channels, kernel_size=1) # 特征融合卷积层 def forward(self, x): mixed_outputs = [] for block in self.mixed_heads: mixed_outputs.append(block(x)) # 通过每个 MHCNNBlock 提取特征 x_mixed = torch.stack(mixed_outputs, dim=0).mean(dim=0) # 多头混合操作的平均值 # 曼巴操作 local_features = self.local_conv(x_mixed) # 提取局部特征 global_features = self.global_pool(x_mixed) # 提取全局特征 global_features = self.global_conv(global_features) # 全局特征的卷积处理 global_features = global_features.expand_as(local_features) # 扩展全局特征以匹配局部特征的尺寸 fused_features = self.fusion_conv(local_features + global_features) # 融合局部和全局特征 return fused_features # 返回融合后的特征 ``` #### 3. `LS2SM_MHMambaOut` 模块 根据文档描述,LS2SM_MHMambaOut 模块结合了光谱校准块、空间-光谱移位模块和 MHMambaOut 进行最终分类。我们将确保每个组件的输入输出通道数一致,并添加必要的校验和优化。 ```python class LS2SM_MHMambaOut(nn.Module): """ 整体网络架构,结合SCB、S2SM和MHMambaOut进行最终分类 """ def __init__(self, num_classes): super(LS2SM_MHMambaOut, self).__init__() self.scb = SpectralCalibrationBlock(in_channels=224, out_channels=96) # 光谱校准块 (SCB) self.sslfem = SpatialSpectralShiftModule(channels=96) # 空间-光谱移位模块 (S2SM) self.mhmambaout = MHMambaOut(in_channels=96, out_channels=96, num_mixed_heads=3) # 多头混合曼巴输出模块 self.classifier = nn.Sequential( nn.Dropout(0.5), # Dropout 层,防止过拟合 nn.AdaptiveAvgPool2d((1, 1)), # 自适应平均池化层 nn.Flatten(), # 展平层 nn.Linear(96, num_classes) # 全连接层,输出分类结果 ) def forward(self, x): x = self.scb(x) # 通过光谱校准块 x = self.sslfem(x) # 通过空间-光谱移位模块 x = self.mhmambaout(x) # 通过多头混合曼巴输出模块 x = self.classifier(x) # 通过分类器 return x # 返回最终分类结果 ``` ### 总结 通过重新审视文档,我们发现文档中并没有明确提到多头注意力机制,而是提到了多头混合操作。因此,我们调整了代码以确保符合文档描述: 1. **MHCNNBlock**:结合卷积操作进行特征提取,不使用多头注意力机制。 2. **MHMambaOut**:结合多头混合操作和曼巴操作,确保特征表示的多样性和鲁棒性。 3. **LS2SM_MHMambaOut**:结合光谱校准块、空间-光谱移位模块和多头混合曼巴输出模块进行最终分类。 希望这些调整和注释能更准确地反映文档中的描述。如果有更多问题或需要进一步的帮助,请随时告知!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值