非常感谢您的提醒。让我重新审视文档,以确保我们严格按照文档的描述来实现模块。如果文档中没有明确提到多头注意力机制,我们应该依据文档的实际描述来调整代码。
### 重新审视文档描述
根据文档中的描述,特别是 **C 部分**,MHMambaOut 模块的主要功能是结合多头混合操作(可能是多头卷积或其他操作)和曼巴操作,而不是明确提到的多头注意力机制。让我们更仔细地检查文档的具体描述,并据此调整代码。
#### C. MHMambaOut(多头混合曼巴输出模块)
文档中提到:
> 为了进一步提升高光谱图像分类和特征提取的性能,我们设计了多头混合曼巴输出模块(MHMambaOut)。该模块结合了多头混合操作和曼巴(Mamba)操作,旨在增强特征表示的多样性和鲁棒性。
具体描述:
1. **多头混合操作**:文档中并未明确说明是多头注意力机制,而是提到多头混合操作。这可能是多头卷积或其他类型的混合操作。
2. **曼巴操作**:包括局部特征增强和全局特征增强,以及特征融合。
### 代码调整
基于文档描述,我们将调整 `MHCNNBlock` 和 `MHMambaOut`,使其更符合文档中的描述,而不引入多头注意力机制。
#### 1. `MHCNNBlock` 模块
根据文档描述,这里主要是结合卷积操作和其他混合操作(如多头卷积),而不是多头注意力机制。我们可以保留卷积和激活函数,但不需要添加复杂的多头注意力机制。
```python
class MHCNNBlock(nn.Module):
"""
多头混合卷积神经网络模块(MHCNN),结合卷积操作进行特征提取
"""
def __init__(self, in_channels, out_channels):
super(MHCNNBlock, self).__init__()
self.norm = nn.LayerNorm(in_channels) # 层归一化
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) # 1x1 卷积层
self.gelu = nn.GELU() # GELU 激活函数
def forward(self, x):
x_norm = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) # 层归一化
x_conv = self.conv(x_norm) # 1x1 卷积
x_gelu = self.gelu(x_conv) # GELU 激活
return x + x_gelu # 残差连接,返回输入与卷积输出的和
```
#### 2. `MHMambaOut` 模块
根据文档描述,MHMambaOut 模块应结合多头混合操作和曼巴操作。我们将实现曼巴操作,并确保多头混合操作符合文档的描述。
```python
class MHMambaOut(nn.Module):
"""
多头混合曼巴输出模块(MHMambaOut),结合多头混合操作和曼巴操作进行全局特征提取
"""
def __init__(self, in_channels, out_channels, num_mixed_heads=3):
super(MHMambaOut, self).__init__()
self.mixed_heads = nn.ModuleList([
MHCNNBlock(in_channels, out_channels) for _ in range(num_mixed_heads)
]) # 堆叠多个 MHCNNBlock 作为多头混合操作
# 曼巴操作
self.local_conv = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) # 局部卷积层
self.global_pool = nn.AdaptiveAvgPool2d(1) # 全局平均池化层
self.global_conv = nn.Conv2d(out_channels, out_channels, kernel_size=1) # 全局卷积层
self.fusion_conv = nn.Conv2d(out_channels, out_channels, kernel_size=1) # 特征融合卷积层
def forward(self, x):
mixed_outputs = []
for block in self.mixed_heads:
mixed_outputs.append(block(x)) # 通过每个 MHCNNBlock 提取特征
x_mixed = torch.stack(mixed_outputs, dim=0).mean(dim=0) # 多头混合操作的平均值
# 曼巴操作
local_features = self.local_conv(x_mixed) # 提取局部特征
global_features = self.global_pool(x_mixed) # 提取全局特征
global_features = self.global_conv(global_features) # 全局特征的卷积处理
global_features = global_features.expand_as(local_features) # 扩展全局特征以匹配局部特征的尺寸
fused_features = self.fusion_conv(local_features + global_features) # 融合局部和全局特征
return fused_features # 返回融合后的特征
```
#### 3. `LS2SM_MHMambaOut` 模块
根据文档描述,LS2SM_MHMambaOut 模块结合了光谱校准块、空间-光谱移位模块和 MHMambaOut 进行最终分类。我们将确保每个组件的输入输出通道数一致,并添加必要的校验和优化。
```python
class LS2SM_MHMambaOut(nn.Module):
"""
整体网络架构,结合SCB、S2SM和MHMambaOut进行最终分类
"""
def __init__(self, num_classes):
super(LS2SM_MHMambaOut, self).__init__()
self.scb = SpectralCalibrationBlock(in_channels=224, out_channels=96) # 光谱校准块 (SCB)
self.sslfem = SpatialSpectralShiftModule(channels=96) # 空间-光谱移位模块 (S2SM)
self.mhmambaout = MHMambaOut(in_channels=96, out_channels=96, num_mixed_heads=3) # 多头混合曼巴输出模块
self.classifier = nn.Sequential(
nn.Dropout(0.5), # Dropout 层,防止过拟合
nn.AdaptiveAvgPool2d((1, 1)), # 自适应平均池化层
nn.Flatten(), # 展平层
nn.Linear(96, num_classes) # 全连接层,输出分类结果
)
def forward(self, x):
x = self.scb(x) # 通过光谱校准块
x = self.sslfem(x) # 通过空间-光谱移位模块
x = self.mhmambaout(x) # 通过多头混合曼巴输出模块
x = self.classifier(x) # 通过分类器
return x # 返回最终分类结果
```
### 总结
通过重新审视文档,我们发现文档中并没有明确提到多头注意力机制,而是提到了多头混合操作。因此,我们调整了代码以确保符合文档描述:
1. **MHCNNBlock**:结合卷积操作进行特征提取,不使用多头注意力机制。
2. **MHMambaOut**:结合多头混合操作和曼巴操作,确保特征表示的多样性和鲁棒性。
3. **LS2SM_MHMambaOut**:结合光谱校准块、空间-光谱移位模块和多头混合曼巴输出模块进行最终分类。
希望这些调整和注释能更准确地反映文档中的描述。如果有更多问题或需要进一步的帮助,请随时告知!