YOLOv8v10改进 | Conv篇 | YOLOv10添加SCConv空间和通道重构卷积(来自CVPR2023论文,既轻量又涨点,助力于小目标任务涨点)

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、SCConv模块介绍

SCConv卷积模块原理

SCConv卷积模块的作用

 SCConv模块结构图 

 空间重构单元(SRU)

通道重构单元(CRU)

 二、SCConv核心代码

 三、手把手教你添加SCConv和C2fSCConv模块和修改task.py文件

四、创建涨点yaml配置文件

修改一 : yolov10_ScConv.yaml 

修改二 : yolov10_C2f_ScConv.yaml 

五、本文总结


一、SCConv模块介绍

摘要:卷积神经网络 (CNN) 在各种计算机视觉任务中取得了卓越的性能,但这是以消耗大量计算资源为代价的,部分原因是卷积层提取了冗余特征。最近的工作要么压缩训练有素的大规模模型,要么探索设计良好的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余进行 CNN 压缩,并提出了一种高效的卷积模块,称为 SCConv(空间和通道重建卷积),以减少冗余计算并促进代表性特征学习。所提出的 SCConv 由两个单元组成:空间重建单元 (SRU) 和通道重建单元 (CRU)。SRU 利用 sepa

<think>好的,用户想在YOLOv8中用深度可分离卷积(DWConv)替换普通卷积,并修改yolov8.yaml配置文件。首先,我需要回忆一下YOLOv8的结构,了解各个模块的位置。YOLOv8模块通常包括Conv、C2f、Bottleneck等,用户提到的DWConv替换应该是在这些模块中的标准卷积层。 接下来,我需要确认深度可分离卷积在PyTorch中的实现方式。通常,这可以通过将普通卷积分解为深度卷积卷积来实现。例如,一个Conv2d层可以替换为一个Depthwise卷积(groups=in_channels)加上一个Pointwise卷积(1x1卷积)。同时,激活函数BN层也需要保持,所以每个DWConv块应该包括Conv、BN激活函数。 然后,考虑如何在YOLOv8的配置文件中进行修改。YOLOv8的yaml文件定义了模型的各个层参数。例如,原始的Conv层可能配置为[-1, 1, Conv, [64, 3, 2]],这里需要将其替换为DWConv模块。需要确定DWConv的参数,比如输入输出通道数、步长等,并确保与原有结构兼容。 还需要注意,替换后的DWConv可能会影响模型的参数量计算量,需要测试是否会影响模型性能。此外,YOLOv8的某些模块可能已经使用了优化结构,比如C3或Bottleneck,替换其中的卷积层时要注意保持结构的连贯性。 用户可能还关心具体的代码实现,比如如何在代码中定义DWConv类,并在yaml文件中引用。因此,需要提供具体的代码示例配置文件修改步骤,确保用户能够按照指导进行操作。同时,提醒用户在替换后重新训练模型,并验证效果是否符合预期。 最后,考虑到用户可能对YOLOv8的结构不太熟悉,需要解释清楚每个修改步骤的目的,确保他们理解为什么要这样调整,以及可能带来的影响。例如,深度可分离卷积可以降低计算成本,但可能减少模型的表达能力,需要权衡速度精度。</think>根据YOLOv8架构特深度可分离卷积的实现原理,修改yolov8.yaml配置文件的步骤如下: ### 一、定义深度可分离卷积模块YOLOv8的common.py中添加DWConv实现: ```python class DWConv(nn.Module): def __init__(self, in_ch, out_ch, k=3, s=1, p=None): super().__init__() self.dw_conv = nn.Sequential( # 深度卷积 nn.Conv2d(in_ch, in_ch, kernel_size=k, stride=s, padding=autopad(k, p), groups=in_ch), nn.BatchNorm2d(in_ch), nn.SiLU(inplace=True), # 逐卷积 nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1), nn.BatchNorm2d(out_ch), nn.SiLU(inplace=True) ) def forward(self, x): return self.dw_conv(x) ``` ### 二、修改yolov8.yaml配置文件 将原配置文件中的`Conv`替换为`DWConv`,示例修改前后对比: 原始配置片段: ```yaml backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 ``` 修改后配置: ```yaml backbone: # [from, repeats, module, args] - [-1, 1, DWConv, [64, 3, 2]] # 0-P1/2 - [-1, 1, DWConv, [128, 3, 2]] # 1-P2/4 ``` ### 三、参数说明 1. `args`字段格式:`[输出通道数, 卷积核尺寸, 步长]` 2. 必须保持通道数的兼容性(输入通道数自动继承前一层的输出) 3. 使用`groups=in_ch`实现深度卷积[^2] ### 四、效果验证建议 1. 计算量降低约$k^2/(k^2 + 1)$倍(k为卷积核尺寸) 2. 参数量减少约$1/N + 1/k^2$(N为输出通道数) 3. 建议使用验证集测试mAP变化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值