YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
一、SDI模块介绍
摘要:在本文中,我们介绍了 U-Net v2,这是一种用于医学图像分割的新型强大且高效的 U-Net 变体。它旨在增强语义信息对低级特征的注入,同时用更精细的细节来提炼高级特征。对于输入图像,我们首先使用深度神经网络编码器提取多级特征。接下来,我们通过注入来自更高级别特征的语义信息并通过 Hadamard 产品集成来自较低级别特征的更精细细节来增强每个级别的特征图。我们新颖的跳过连接为所有级别的功能提供了丰富的语义特征和复杂的细节。改进的功能随后传输到解码器,以进行进一步处理和分割。我们的方法可以无缝集成到