YOLOv8v10改进 | Neck改进篇 | YOLOv10引入SDI多尺度融合模块助力于小目标检测和图像分割涨点

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、SDI模块介绍

SDI模块结构图:

 二、 SDI模块核心代码

 三、手把手教你添加SDI模块和修改task.py文件

四、创建涨点yaml配置文件

修改一 : yolov10n_SDI.yaml

 正常运行:​

五、本文总结


一、SDI模块介绍

摘要:在本文中,我们介绍了 U-Net v2,这是一种用于医学图像分割的新型强大且高效的 U-Net 变体。它旨在增强语义信息对低级特征的注入,同时用更精细的细节来提炼高级特征。对于输入图像,我们首先使用深度神经网络编码器提取多级特征。接下来,我们通过注入来自更高级别特征的语义信息并通过 Hadamard 产品集成来自较低级别特征的更精细细节来增强每个级别的特征图。我们新颖的跳过连接为所有级别的功能提供了丰富的语义特征和复杂的细节。改进的功能随后传输到解码器,以进行进一步处理和分割。我们的方法可以无缝集成到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值