YOLOv8v10改进 | 注意力篇 | 手把手教你在YOLOv10上缝合高效多尺度注意力(EMA)模块(图像分类和目标检测等任务通用)ICASSP2023中稿论文

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、EMA模块介绍

本文创新点:

EMA模块结构图

​  二、EMA核心代码

三、手把手教你添加EMA模块和修改task.py文件

1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件

2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用

3.修改task.py文件

四、创建涨点yaml配置文件

参考版本1 : yolov10n_EMA.yaml

 参考版本1 :正常运行​编辑

 参考版本2 : yolov10n_C2f_EMA.yaml

          参考版本2 :正常运行​编辑

五、本文总结


一、EMA模块介绍

摘要:在各种计算机视觉任务中说明了通道或空间注意力机制在产生更可辨别的特征表示方面的显着有效性。然而,使用通道降维对跨通道关系进行建模可能会在提取深度视觉表示时带来副作用。该文提出了一种新的高效多尺度注意力 (EMA) 模块。专注于保留每个通道的信息并减少计算开销,我们将部分通道重塑为批处理维度,并将通道维度分组为多个子特征,这使得空间语义特征在每个特征组内分布均匀。具体来说,除了对全局信息进行编码以重新校准每个并行分支中的通道权重外,两个并行分支的输出特征通过跨维度交互进一步聚合,以捕获像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值