YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件
2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用
一、EMA模块介绍
摘要:在各种计算机视觉任务中说明了通道或空间注意力机制在产生更可辨别的特征表示方面的显着有效性。然而,使用通道降维对跨通道关系进行建模可能会在提取深度视觉表示时带来副作用。该文提出了一种新的高效多尺度注意力 (EMA) 模块。专注于保留每个通道的信息并减少计算开销,我们将部分通道重塑为批处理维度,并将通道维度分组为多个子特征,这使得空间语义特征在每个特征组内分布均匀。具体来说,除了对全局信息进行编码以重新校准每个并行分支中的通道权重外,两个并行分支的输出特征通过跨维度交互进一步聚合,以捕获像