YOLOv8v10改进 | 细节涨点篇 | YOLOv10引入SRFD 浅层下采样和DRFD深层下采样,提高特征稳健性(在图像分类、目标检测和语义分割等任务上高效涨点)-- 来自TGRS 2023

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、SRFD和DRFD模块介绍

SRFD和DRFD模块作用

 SRFD和DRFD模块结构图:

实验效果图,效果挺好

​二、 SRFD和DRFD模块核心代码

三、手把手教你添加 SRFD和DRFD模块和修改task.py文件

1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件

 2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用

 3.修改task.py文件 :

 四、创建涨点配置文件yolov10n_SRFD_DRFD.yaml  

正常运行

五、本文总结


一、SRFD和DRFD模块介绍

摘要: 由于分辨率较低、物体较小且特征较少,遥感 (RS) 图像给计算机视觉带来了独特的挑战。主流骨干网络对传统视觉任务显示出可喜的成果。但是,它们使用卷积来降低特征图维度,这可能会导致 RS 图像中小对象的信息丢失并降低性能。为了解决这个问题,我们提出了一个名为 Robust Feature Downsampling (RFD) 的新的通用下采样模块。RFD 融合了通过不同下采样技术提取的多个特征图,从而创建具有互补特征集的更强大的特征图。利用这一点,我们克服了传统卷积下采样的局限性,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值