YOLOv8v10改进 | Conv篇 | YOLOv10引入RCS-YOLO中的RCSOSA以提取更丰富的信息并减少时间消耗(助力于脑肿瘤目标检测任务)

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、RCSOSA模块介绍

 RCSOSA基于通道随机播放的重新参数化卷积

RCS-YOLO 概述

  RCSOSA 的结构图

 二、核心代码

三、手把手教你添加  RCSOSA模块和修改task.py文件

1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件

2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用

3.修改task.py文件

四、创建涨点yaml配置文件

参考版本1 : yolov10n_ RCSOSA.yaml

正常运行

参考版本2 : yolov10n_ RCSOSA.yaml 

正常运行

五、本文总结


一、RCSOSA模块介绍

摘要 :凭借速度和准确性之间的出色平衡,尖端的 YOLO 框架已成为最有效的对象检测算法之一。然而,在脑肿瘤检测中使用 YOLO 网络的性能很少得到研究。我们提出了一种新颖的 YOLO 架构,具有基于通道随机播放的重新参数化卷积 (RCS-YOLO)。我们提出了 RCS 和 OneShot Aggre

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值