YOLOv8v10改进 | 独家创新篇 | YOLOv8v10引入xLSTM通过将卷积层的局部特征提取优势与 xLSTM 的长距离依赖性捕获能力相结合(助力于医学图像分割任务)

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、xLSTM介绍

xLSTM-UNet框架图

xLSTM介绍:

 xLSTM 相对于原始 LSTM 的几个主要区别:

二、核心代码

三、手把手教你添加模块和修改task.py文件

1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件

2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用 

3.修改task.py文件

四、创建涨点yaml配置文件

参考版本 :

正常运行:

五、本文总结


一、xLSTM介绍

摘要:卷积神经网络 (CNN) 和视觉转换器 (ViT) 在生物医学图像分割中一直发挥着关键作用,但它们管理长期依赖关系的能力仍然受到固有局部性和计算开销的限制。 为了克服这些挑战,在本技术报告中,我们首先提出了 xLSTM-UNet,这是一种 UNet 结构化深度学习神经网络,它利用 Vision-LSTM (xLSTM) 作为其医学图像分割的主干。xLSTM 是最近提出的长短期记忆 (LSTM) 网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值