YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件
2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用
一、本文介绍:
摘要: 尽管最近的许多工作在图像修复 (IR) 领域取得了进展,但它们经常受到参数过多的影响。另一个问题是,大多数基于 Transformer 的 IR 方法只关注局部或全局特征,导致感受野有限或参数不足问题。为了解决这些问题,我们提出了一种轻量级 IR 网络,即 Reciprocal Attention Mixing Transformer (RAMiT)。它采用了我们提出的维度倒易注意力混合 Transformer (D-RAMiT) 块,该块