YOLOv11改进 | 特征融合改进篇 | YOLOv11引入 CGAFusion高频与低频特征融合模块(全网独家创新)来自TIP 2024顶刊

全新YOLOv11专栏限时订阅链接:全新YOLOv11创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

一、本文介绍

本文给大家介绍一种CGAFusion高频与低频特征融合模块创新改进点

目前在编解码器架构(如U-Net)中,特征融合(从编码器到解码器)是提升性能的有效手段。然而,浅层(低级)特征和深层(高级)特征的感受野存在显著差异,简单的加法或拼接操作无法有效解决这种感受野不匹配问题。CGAFusion模块通过引入内容引导注意力(CGA)机制,有效提升了目标检测模型的性能。CGA机制通过生成每个通道的空间重要性图(SIMs),引导模型专注于图像中的关键特征,而基于CGA的混合融合方案则增强了浅层和深层特征的融合,改善了特征的传递和梯度流动。

目录

一、本文介绍

二、 CGAFusion模块介绍

本文内容总结:

CGAFusion模型结构图:

三、CGAFusion核心代码  

四、手把手教你添加CGAFusion模块和修改tasks.py文件

 五、创建模块缝合涨点yaml配置文

 参考缝合思路举例: yolov11n_CGAFusion.yaml 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值