一、本文介绍
本文给大家介绍一种利用 MobileNetV4优化YOLOv11模型主干网络!MobileNetV4 凭借创新的技术,在ImageNet-1K上达到了87%的top-1准确率,并在实现3.8ms的低延迟,适合目标检测,图像分类等任务作为YOLO轻量高效主干改进。
全新YOLOv11专栏限时订阅链接:全新YOLOv11创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
四、手把手教你添加MobileNetV4网络结构和修改task.py文件
1.首先在yolov11/ultralytics/nn/newsAddmodules创建一个.py文件
2.在yolov11/ultralytics/nn/newsAddmodules/__init__.py中引用
3.修改task.py文件 :在task.py中找到这个参数方法 def parse_model(d, ch, verbose=True):