scrapy-redis分布式爬虫学习记录

目录

1. scrapy-redis是什么?

2. scrapy-redis工作原理

3.分布式架构

4. scrapy-redis的源码分析

5. 部署scrapy-redis

6. scrapy-redis的基本使用

6.1 redis数据库基本表项

6.2 在scrapy项目的基础进行更改

7. redis数据转存入mysql数据库


课程推荐:day07_01.scrapy-redis官方案例演示_recv_哔哩哔哩_bilibili

1. scrapy-redis是什么?

scrapy是一个通用的爬虫框架,但是不支持分布式,
scrapy-Redis是为了更方便地实现scrapy分布式爬取,而提供了一些Tredis为基础的组件(仅有组件)

2. scrapy-redis工作原理

与scrapy框架不同的是,scrapy-redis框架中request链接不再交付于调度器(Scheduler)中url队列,而是保存在redis数据库中,再由过滤器进行过滤,符合要求的请求链接再交付于调度器(Scheduler),此外redis数据还可以存储到本地数据库(item processes)。其余流程与scrapy流程基本相同。

(1) 引擎(Scrapy Engine)向爬虫(Spiders)请求第一个要爬取的URL。

(2) 引擎从爬虫中获取到第一个要爬取的URL,封装成请求(Request)并交给调度器(Scheduler)。

(3) 调度器访问Redis数据库对请求进行判重,如果不重复,就把这个请求添加到Redis中。

(4) 当调度条件满足时,调度器会从Redis中取出Request,交给引擎,引擎将这个Request通过下载中间件转发给下载器。

(5) 一旦页面下载完毕,下载器(Downloader)生成一个该页面的响应(Response),并将其通过下载中间件发送给引擎。

(6) 引擎从下载器中接收到响应,并通过爬虫中间件(Spider Middlewares)发送给爬虫处理。

(7) Spider处理Response,并返回爬取到的Item及新的Request给引擎。

(8) 引擎将爬取到的Item通过Item Pipeline给Redis数据库,将Request给调度器。从(2) 开始重复,直到调度器中没有更多的Request为止。

3.分布式架构

 这种框架,主从式框架主要由一台url提供主机(master)向资源爬取主机(slave)提供url,由资源爬取主机依照url爬取相应的资源。这也是scrapy-redis的分布式模式。

4. scrapy-redis的源码分析

(1) 源码地址

GitHub - rmax/scrapy-redis: Redis-based components for Scrapy.

(2) 源码案例详解

example-project为源码给予的案例,我们使用scrapy-redis以此为例。我们仅需分析example-project下的文件即可。与scrapy相同,scrapy-redis主要文件也是由items文件、pipelines文件、setting文件和爬虫文件组成。

items文件: 与scrapy一样,为爬虫文件的数据结构

from scrapy.item import Item, Field
from scrapy.loader import ItemLoader
from scrapy.loader.processors import MapCompose, TakeFirst, Join

# 与scrapy一样,为爬虫文件的数据结构
class ExampleItem(Item):
    name = Field()
    description = Field()
    link = Field()
    crawled = Field()
    spider = Field()
    url = Field()

# 与scrapy中的ItemLoader作用一致
class ExampleLoader(ItemLoader):
    default_item_class = ExampleItem
    default_input_processor = MapCompose(lambda s: s.strip())
    default_output_processor = TakeFirst()
    description_out = Join()

pipelines文件: 没有特殊需要,pipelines文件不再需要写任何的语句,return会自动将item数据传入数据库。

from datetime import datetime


class ExamplePipeline(object):
    def process_item(self, item, spider):
        # 时间戳
        item["crawled"] = datetime.utcnow()
        # 爬虫名,分布式爬虫有多个爬虫,规定爬虫名易于区分
        item["spider"] = spider.name

        return item

setting文件: scrapy_redis所必须的设置

SPIDER_MODULES = ['example.spiders']
NEWSPIDER_MODULE = 'example.spiders'

USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)'

# 去重类,使用scrapy_redis中的去重类
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度器,使用scrapy_redis中的调度器组件
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 是否允许暂停,redis中请求记录不丢失
SCHEDULER_PERSIST = True

# 默认的scrapy-redis请求集合
# SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"

# 队列形式,请求url会先进先出
# SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"

# 栈形式,请求url会先进后出
# SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"

# 'scrapy_redis.pipelines.RedisPipeline' 支持存储到redis数据库中,必须开启
ITEM_PIPELINES = {
    'example.pipelines.ExamplePipeline': 300,
    # redis管道,必须设置,不然数据无法传入数据库
    'scrapy_redis.pipelines.RedisPipeline': 400,
}

# 日志等级
LOG_LEVEL = 'DEBUG'

# 下载延迟
DOWNLOAD_DELAY = 1

# redis配置
# 指定数据库ip
REDIS_HOST = "127.0.0.1"
# 指定数据库端口号
REDIS_PORT = 6379

爬虫文件(三个不同类型的样例):

domz.py非分布式,有链接提取器

# domz.py

from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule

# 非分布式,有链接提取器
# 使用的是CrawlSpider链接提取器
class DmozSpider(CrawlSpider):
    """Follow categories and extract links."""
    name = 'dmoz'
    allowed_domains = ['dmoz-odp.org']
    start_urls = ['http://www.dmoz-odp.org/']

    # 链接提取器的提取规则
    rules = [
        Rule(LinkExtractor(
            restrict_css=('.top-cat', '.sub-cat', '.cat-item')
        ), callback='parse_directory', follow=True),
    ]

    def parse_directory(self, response):
        for div in response.css('.title-and-desc'):
            yield {
                'name': div.css('.site-title::text').extract_first(),
                'description': div.css('.site-descr::text').extract_first().strip(),
                'link': div.css('a::attr(href)').extract_first(),
            }

mycrawler_redis.py:  分布式,有链接提取器

# mycrawler_redis.py

from scrapy.spiders import Rule
from scrapy.linkextractors import LinkExtractor

from scrapy_redis.spiders import RedisCrawlSpider


class MyCrawler(RedisCrawlSpider):
    name = 'mycrawler_redis'
    # 分布式爬虫开启指令,第一个要爬前的url,与数据库中格式需一致
    redis_key = 'mycrawler:start_urls'

    # 提取链接规则
    rules = (
        # follow all links
        Rule(LinkExtractor(), callback='parse_page', follow=True),
    )

    # 动态域名,与allowed_domains作用一致,规定可爬url域,可设置多个可爬域
    # __init__方法必须按规定写,使用时只需修改super()里的类名参数即可
    def __init__(self, *args, **kwargs):
        domain = kwargs.pop('domain', '')
        self.allowed_domains = filter(None, domain.split(','))

        # 修改这里的类名为当前类名
        super(MyCrawler, self).__init__(*args, **kwargs)

    def parse_page(self, response):
        return {
            'name': response.css('title::text').extract_first(),
            'url': response.url,
        }

myspider_redis.py:  分布式,无链接提取器

from scrapy_redis.spiders import RedisSpider

# 没有链接提取器
class MySpider(RedisSpider):
    """Spider that reads urls from redis queue (myspider:start_urls)."""
    name = 'myspider_redis'
    # 分布式爬虫开启指令,第一个要爬前的url,与数据库中格式需一致
    redis_key = 'myspider:start_urls'

    def __init__(self, *args, **kwargs):
        # Dynamically define the allowed domains list.
        # 弹出域名
        domain = kwargs.pop('domain', '')
        # 准许访问的域名
        self.allowed_domains = filter(None, domain.split(','))
        super(MySpider, self).__init__(*args, **kwargs)

    def parse(self, response):
        return {
            'name': response.css('title::text').extract_first(),
            'url': response.url,
        }

5. 部署scrapy-redis

(1) slave端(2台linux系统)

软件配置:python 3 + pip + scrapy + scrapy-redis

安装linux系统:https://shuijinglan.blog.csdn.net/article/details/105604065

配置yum网络源:https://pokes.blog.csdn.net/article/details/124627065

安装python 3(版本要9.9):Linux系统安装Python3环境(超详细) - 知乎

安装scrapy-redis:

pip install scrapy-redis -i https://pypi.douban.com/simple

(2)master端(windows系统)
软件配置: redis + scrapy + scrapy-redis

redis下载:

https://github.com/tporadowski/redis/releases/download/v5.0.14.1/Redis-x64-5.0.14.1.zip

redis.windows.conf配置:

1. 在redis.windows.conf文件中,禁用bind 127.0.0.1

2. 在redis.windows.conf文件中,将daemonize no改为yes

启动redis:先运行redis-server再运行redis-cli

永久启动方法:

Redis下载和安装(Windows系统)

6. scrapy-redis的基本使用

6.1 redis数据库基本表项

爬虫名:dupelines        # 已过滤的链接,已爬过的链接不再爬取

爬虫名:items               # 爬取的数据,对应items数据项

爬虫名:requests          # 请求链接,要爬的url

爬虫名:start_urls         # 分布式爬虫开启指令,第一个要爬的url,与数据库中格式需一致

6.2 在scrapy项目的基础进行更改

(1) 在settings中添加配置信息

# scrapy-redis
USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)'

# 过滤配置
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度引擎
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 是否允许暂停
SCHEDULER_PERSIST = True

# SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
# SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
# SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"
ITEM_PIPELINES = {
    'DistrubutedSpider.pipelines.DistrubutedSpiderPipeline': 300,
    # redis管道,item数据直接入库,必须添加
    'scrapy_redis.pipelines.RedisPipeline': 400,
}

(2)更改爬虫文件

第一种:带有链接提取器

# 读书网案例
from scrapy.spiders import Rule
from scrapy.linkextractors import LinkExtractor
from scrapy_redis.spiders import RedisCrawlSpider

# 带有链接提取器
class slaveSpider(RedisCrawlSpider):
    name = 'slave'
    # 起始连接,放在数据库中第一批要爬取得链接,Requests从这批链接的页面中获取
    redis_key = 'slave:start_urls'

    # 提取链接规则
    rules = (
        Rule(LinkExtractor(allow=r'/book/1188_\d+\.html'), callback='parse_item', follow=False),
    )

    # 类似allow_domain,准许多个域名域
    # 动态域,__init__方法必须按规定写,使用时只需修改super()里的类名参数即可
    def __init__(self, *args, **kwargs):
        # Dynamically define the allowed domains list.
        domain = kwargs.pop('domain', '')
        self.allowed_domains = filter(None, domain.split(','))

        # 修改这里的类名为当前类名
        super(Master02Spider, self).__init__(*args, **kwargs)

    def parse_item(self,response):
        # xpath
        img_list = response.xpath('//ul/li/div[@class="book-info"]/div/a')
        for i in img_list:
            src = i.xpath('./img/@data-original').extract_first()
            name = i.xpath('./img/@alt').extract_first()
            # item
            yield {'src': src, 'name': name}

(3)运行程序

在2台linux虚拟机中分别部署爬虫文件,运行,并在redis输入start_urls  。

分布式爬虫文件启动命令:

scrapy runspider 爬虫文件名.py

 例:scrapy runspider slave.py

进入Redis数据库输入:

lpush 爬虫文件名:start_urls   要爬的第一条链接

例:lpush slave:start_urls https://www.dushu.com/book/1188_01.html

7. redis数据转存入mysql数据库

(1)安装MySQLdb (python版本为3.7)

pip install mysqlclient==1.3.14

(2)redis数据转存入mysql数据库

# !/usr/bin/env python
# -*- coding:utf-8 -*-
import redis
import MySQLdb
import json

def process_item():
    while(True):
        # 1.创建redis数据库链接
        redis_con = redis.Redis(host="127.0.0.1",port=6379,db=0)
        # 2.创建mysql数据库链接
        mysql_con = MySQLdb.connect(host="127.0.0.1",port=3306,user="root",password="123456",db="spider01", charset="utf8")
        # 3.将数据从redis数据库中pop出来
        source,data = redis_con.blpop("demo02:items")
        # 4.json转换字符串
        item = json.loads(data)
        ## mysql
        # 5.创建mysql的游标对象,执行sql语句
        cursor = mysql_con.cursor()
        # 6.sql语句
        sql = 'insert into book(name,src) values ("{}","{}")'.format(item['name'],item['src'])
        # 7.执行sql,%等同于格式化语句.format()
        cursor.execute(sql)
        # 8.提交
        mysql_con.commit()
        # 9.结束
        cursor.close()

if __name__ == '__main__':
    process_item()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向岸看

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值