卡尔曼滤波是一种递归的优化算法,用于估计一个系统的动态状态,常用于跟踪、导航、时间序列分析等领域。它的关键在于使用一系列测量数据(通常含噪声)来估计系统的真实状态,使得估计值更接近实际情况。卡尔曼滤波器适合在一维或多维的状态空间中跟踪一个随时间变化的系统状态。
一、卡尔曼滤波器的基本概念
卡尔曼滤波器通过一系列测量数据和预测模型,实时地估计系统的状态。它假设系统具有高斯噪声和线性变化,可以用系统的动态模型和测量模型来描述:
- 动态模型:描述系统状态如何从一个时间点转移到下一个时间点。
- 测量模型:描述测量如何反映当前系统状态。
二、卡尔曼滤波的数学模型
卡尔曼滤波器通过两个关键方程来描述系统的状态:
- 状态转移方程:描述当前状态由前一状态的转移关系
- 观测方程:描述测量值如何从当前状态推导而来
假设系统状态向量为 xk,观测值为 zk,则:
1. 状态转移方程
其中:
- A:状态转移矩阵,用于描述系统如何随时间变化。
- B:控制输入矩阵。
- uk:控制向量(可选,通常忽略)。
- wk:过程噪声,服从高斯分布,协方差为 Q。
2. 观测方程
其中:
- H:观测矩阵,描述如何通过状态向量计算观测值。
- vk:测量噪声,服从高斯分布,协方差为 R。
三、卡尔曼滤波器的运算步骤
卡尔曼滤波器主要包括两个阶段:预测和更新。
1. 预测阶段
基于当前状态估计,预测下一时间步的状态和误差协方差。
- 状态预测: