VisionPro学习记录17圆形瓶口缺陷检测

该文介绍了通过PMA和原点工具确定圆心坐标,使用CogPolarUnwrapTool将圆弧展开成矩形,再借助斑点工具检测瑕疵的方法。非环性的概念被用来评估形状的规则程度,较大的非环性值表示形状更不规则,适用于图像或物体的圆形度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

流程图连接图效果图

 

 

细节部分

思路

用PMA和原点工具找到原点,用于找圆(不找原点的画,不能确定找到的圆的圆心坐标),然后用CogPolarUnwrapTool工具把圆弧展开为矩形,在矩形上用斑点工具,通过斑点数量来判断是否为瑕疵品。

杂斑

用PMA时,观察需不需要考虑杂斑

非环性

 较大的非环性值表示形状更加不规则,轮廓曲线更加复杂和扭曲。这意味着图像或物体的外形越远离圆形或环状,非环性值可能会越大。

例如,下图一中的斑点非环性9.5,说明越不像环,而1.0的更像环性

 

 

### VisionPro在体恤缺陷检测中的技术方案 #### 圆形特征定位与提取 对于体恤上的圆形图案或其他几何图形,可以采用PMA(Pattern Matching Algorithm)和原点工具来精确定位这些特征的位置。这一步骤确保后续处理能够基于固定的参照系进行操作[^1]。 ```python # Python伪代码展示如何调用VisionPro API实现圆周特征匹配 def locate_circular_feature(image, pattern_model): origin_point = find_origin(image) # 使用原点工具获取图像中原点坐标 matched_positions = match_pattern(image, pattern_model, origin=origin_point) return matched_positions ``` #### 图像预处理与变换 利用`CogPolarUnwrapTool`将复杂的曲面结构转换成简单的平面视图,使得原本难以分析的区域变得易于评估。特别是当需要检查领口、袖口等部位是否存在裂缝或者其他形式损伤时非常有用[^2]。 ```c++ // C++风格伪代码描述极坐标展开过程 void unwrap_polar_to_rectangular(Mat& srcImage, Mat& dstImage){ // 假设已经获得了中心点位置centerPoint以及半径radius polarTransform(srcImage, dstImage, centerPoint, radius); } ``` #### 缺陷分类与量化 通过斑点工具统计矩形区域内异常像素的数量,并据此判断产品是否合格。如果发现过多或过大的异物,则认为该件衣物存在质量问题并标记出来以便进一步审查。 ```sql -- SQL查询语句模拟数据库中存储的质量检验结果检索 SELECT garment_id, defect_count FROM inspection_results WHERE category='T-shirt' AND batch_number='BATCH_007'; ``` #### 应用实例:某服装厂生产线自动化质量控制 一家大型服装制造商在其生产线上部署了配备有VisionPro系统的机器视觉设备,专门负责对成品体恤衫进行全面扫描。系统不仅能够快速识别诸如污渍、破洞之类的表面瑕疵,还能深入到纤维层面去探测潜在问题,从而大大提高了出厂产品的整体品质水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值